洗車(chē)監(jiān)控視頻壓縮感知技術(shù)研究
[Abstract]:With the development of wireless network technology, surveillance video has appeared in more and more industries. In traditional signal processing, the requirement of signal sampling is twice as high as the highest frequency of the signal, so that the original signal can be reconstructed accurately. This directly leads to the problems of large data storage and slow transmission signal. The video processing technology based on compressed sensing has gradually become a hot research topic at home and abroad. This paper takes the monitoring video of the car washer as the research background and sample. Firstly, the content of the monitoring video is effectively screened by the basic means of image processing, and the vehicle image is saved. Preserved images are processed by compressive sensing. Dictionary construction is one of the most important technical means of compressive sensing, which has an important impact on the quality of reconstructed signals. Dictionary training algorithm is analyzed in depth, and a compression sensing video processing method combining KSVD initial dictionary training method and OMP algorithm is proposed. This method can make the atoms iterate and update the dictionary continuously, so as to reduce the error and obtain better reconstruction quality. The KSVD dictionary is trained and constructed by frame difference method, and the sampling rate of key frame and non-key frame is adjusted continuously by setting frame groups. Not only the intra-frame information is utilized, but also the inter-frame information is used efficiently, which greatly reduces the memory space and obtains more significant subjective visual reconstruction effect and the reconstruction effect of objective numerical comparison. The experimental results show that the compression sensing method can greatly reduce the storage space of the video image of the car wash line. Compared with the KSVD dictionary method without frame difference method, when the key frame sampling rate is 0.9 and the non-key frame difference sampling rate is 0.1, the KSVD dictionary construction method based on frame difference method can make the video single frame image level. Average PSNR (peak signal-to-noise ratio) increased by 1.86 to 3.95dB, which improved subjective and objective quality of reconstructed images.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 蔣業(yè)文;于昕梅;;壓縮感知的自適應(yīng)冗余字典及其圖像恢復(fù)方法研究[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
2 戴瓊海;付長(zhǎng)軍;季向陽(yáng);;壓縮感知研究[J];計(jì)算機(jī)學(xué)報(bào);2011年03期
3 王艷;練秋生;李凱;;基于聯(lián)合正則化及壓縮傳感的MRI圖像重構(gòu)[J];光學(xué)技術(shù);2010年03期
4 余慧敏;方廣有;;壓縮感知理論在探地雷達(dá)三維成像中的應(yīng)用[J];電子與信息學(xué)報(bào);2010年01期
5 石光明;劉丹華;高大化;劉哲;林杰;王良君;;壓縮感知理論及其研究進(jìn)展[J];電子學(xué)報(bào);2009年05期
6 鄒福輝;李忠科;;圖像邊緣檢測(cè)算法的對(duì)比分析[J];計(jì)算機(jī)應(yīng)用;2008年S1期
相關(guān)博士學(xué)位論文 前2條
1 孫玉寶;圖像稀疏表示模型及其在圖像處理反問(wèn)題中的應(yīng)用[D];南京理工大學(xué);2010年
2 鄧承志;圖像稀疏表示理論及其應(yīng)用研究[D];華中科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前4條
1 姜平;基于壓縮視頻感知字典構(gòu)造方法研究[D];西安電子科技大學(xué);2013年
2 黨銀強(qiáng);復(fù)雜場(chǎng)景下的車(chē)輛識(shí)別研究[D];哈爾濱工程大學(xué);2013年
3 見(jiàn)春雨;壓縮感知算法及其在超寬帶信道估計(jì)中的應(yīng)用研究[D];南京郵電大學(xué);2012年
4 劉智威;基于壓縮感知的重構(gòu)算法與語(yǔ)音壓縮研究[D];南京郵電大學(xué);2013年
,本文編號(hào):2228250
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2228250.html