面向維基百科的領(lǐng)域知識(shí)演化關(guān)系抽取
發(fā)布時(shí)間:2018-09-04 18:20
【摘要】:互聯(lián)網(wǎng)下同一領(lǐng)域中不同知識(shí)概念間存在多種關(guān)系,其中演化關(guān)系對(duì)于用戶學(xué)習(xí)和理解領(lǐng)域知識(shí),梳理領(lǐng)域知識(shí)的前序和后續(xù)邏輯關(guān)系具有重要意義,然而網(wǎng)絡(luò)數(shù)據(jù)的多樣和無(wú)序使用戶難以準(zhǔn)確有序地獲取領(lǐng)域知識(shí)關(guān)系.針對(duì)該問(wèn)題,提出一種面向中文維基百科領(lǐng)域知識(shí)的演化關(guān)系抽取方法,利用語(yǔ)法分析特征,挖掘演化關(guān)系模式,構(gòu)建演化關(guān)系推理模型,采用基于句子層面的關(guān)系抽取算法識(shí)別領(lǐng)域知識(shí)演化關(guān)系,最后在真實(shí)的維基百科數(shù)據(jù)集上對(duì)該文方法進(jìn)行了性能評(píng)測(cè).實(shí)驗(yàn)表明,該方法具有較高的關(guān)系抽取準(zhǔn)確率和召回率,能有效地抽取出維基百科中領(lǐng)域知識(shí)的演化關(guān)系.同時(shí),基于實(shí)驗(yàn)抽取結(jié)果構(gòu)建知識(shí)圖譜,能有效挖掘領(lǐng)域?qū)W科下知識(shí)集合的演化體系,識(shí)別重難點(diǎn)知識(shí),對(duì)學(xué)科建設(shè)以及相關(guān)課程教學(xué)具有一定的指導(dǎo)意義.
[Abstract]:There are many relationships between different concepts of knowledge in the same domain under the Internet. Among them, evolutionary relationships are of great significance for users to learn and understand domain knowledge, to sort out the preorder and subsequent logical relationships of domain knowledge. However, the diversity and disorder of network data make it difficult for users to acquire domain knowledge relationship accurately and orderly. In order to solve this problem, an evolutionary relationship extraction method for Chinese Wikipedia domain knowledge is proposed, which utilizes the features of grammar analysis, mining evolutionary relational patterns, and constructing evolutionary relational reasoning model. The relationship extraction algorithm based on sentence level is used to identify the evolutionary relationship of domain knowledge. Finally, the performance of this method is evaluated on the real Wikipedia dataset. Experiments show that the proposed method has a high accuracy and recall rate of relation extraction, and it can effectively extract the evolutionary relationship of domain knowledge in Wikipedia. At the same time, constructing the knowledge map based on the experimental results can effectively mine the evolution system of knowledge set under the domain discipline, identify the important and difficult knowledge, and have certain guiding significance for the subject construction and related course teaching.
【作者單位】: 西南科技大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;西南科技大學(xué)教育信息化推進(jìn)辦公室;中國(guó)科學(xué)技術(shù)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:四川省教育廳資助項(xiàng)目(14ZB0113) 西南科技大學(xué)博士基金(12zx7116) 賽爾網(wǎng)絡(luò)下一代互聯(lián)網(wǎng)技術(shù)創(chuàng)新項(xiàng)目(NGII20150510)資助~~
【分類號(hào)】:TP391.1
本文編號(hào):2222971
[Abstract]:There are many relationships between different concepts of knowledge in the same domain under the Internet. Among them, evolutionary relationships are of great significance for users to learn and understand domain knowledge, to sort out the preorder and subsequent logical relationships of domain knowledge. However, the diversity and disorder of network data make it difficult for users to acquire domain knowledge relationship accurately and orderly. In order to solve this problem, an evolutionary relationship extraction method for Chinese Wikipedia domain knowledge is proposed, which utilizes the features of grammar analysis, mining evolutionary relational patterns, and constructing evolutionary relational reasoning model. The relationship extraction algorithm based on sentence level is used to identify the evolutionary relationship of domain knowledge. Finally, the performance of this method is evaluated on the real Wikipedia dataset. Experiments show that the proposed method has a high accuracy and recall rate of relation extraction, and it can effectively extract the evolutionary relationship of domain knowledge in Wikipedia. At the same time, constructing the knowledge map based on the experimental results can effectively mine the evolution system of knowledge set under the domain discipline, identify the important and difficult knowledge, and have certain guiding significance for the subject construction and related course teaching.
【作者單位】: 西南科技大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;西南科技大學(xué)教育信息化推進(jìn)辦公室;中國(guó)科學(xué)技術(shù)大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:四川省教育廳資助項(xiàng)目(14ZB0113) 西南科技大學(xué)博士基金(12zx7116) 賽爾網(wǎng)絡(luò)下一代互聯(lián)網(wǎng)技術(shù)創(chuàng)新項(xiàng)目(NGII20150510)資助~~
【分類號(hào)】:TP391.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 曾蘊(yùn)波;王明微;范海濤;;面向MBSE的產(chǎn)品階段模型的要素演化關(guān)系發(fā)現(xiàn)方法研究[J];制造業(yè)自動(dòng)化;2013年05期
,本文編號(hào):2222971
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2222971.html
最近更新
教材專著