基于用戶評(píng)論的自動(dòng)摘要的研究和分析
[Abstract]:E-commerce is developing rapidly, network information is increasing day by day. With more and more people shopping on the Internet, how to improve the user experience and enhance the exchange of information between merchants and users has become an important issue. The comments left by users after shopping is an important platform for information feedback between users and merchants, so this paper proposes a research on user comments. The mining of user comments is different from that of traditional text mining because user comments are usually much shorter than ordinary text and focus on more detailed information points. This involves many natural language processing, machine learning and data mining techniques. With the development of machine learning, especially the rise of deep learning, many problems have been further studied. Based on the basic knowledge of natural language processing, association mining algorithm, hierarchical clustering model, neural network and decision tree algorithm, this paper makes a new research on automatic summary of comments. According to the characteristics of Chinese, this paper improves the Apriori algorithm for extracting comment features in English, and obtains good results, which proves the feasibility of this method. In this paper, the word activation force model is applied to comment feature clustering, which is more applicable than the traditional clustering model. For the emotional analysis of comment sentences, the recurrent self-coding neural network is used based on word2vec, which is about 8 times higher than the traditional naive Bayesian classifier. Finally, a hierarchical model based on decision tree is proposed to better organize the presentation of the summary.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 梁軍;柴玉梅;原慧斌;昝紅英;劉銘;;基于深度學(xué)習(xí)的微博情感分析[J];中文信息學(xué)報(bào);2014年05期
2 莫倩;楊珂;;網(wǎng)絡(luò)水軍識(shí)別研究[J];軟件學(xué)報(bào);2014年07期
3 郭福亮;周鋼;;基于HMM的個(gè)體微博情感分析預(yù)測(cè)方法研究[J];艦船電子工程;2014年02期
4 孟凡新;;中國(guó)網(wǎng)絡(luò)購(gòu)物市場(chǎng)研究報(bào)告[J];互聯(lián)網(wǎng)天地;2013年06期
5 李實(shí);葉強(qiáng);李一軍;Rob Law;;中文網(wǎng)絡(luò)客戶評(píng)論的產(chǎn)品特征挖掘方法研究[J];管理科學(xué)學(xué)報(bào);2009年02期
6 伍星;何中市;黃永文;;產(chǎn)品評(píng)論挖掘研究綜述[J];計(jì)算機(jī)工程與應(yīng)用;2008年36期
7 章劍鋒;張奇;吳立德;黃萱菁;;中文觀點(diǎn)挖掘中的主觀性關(guān)系抽取[J];中文信息學(xué)報(bào);2008年02期
8 董靜;孫樂(lè);馮元勇;黃瑞紅;;中文實(shí)體關(guān)系抽取中的特征選擇研究[J];中文信息學(xué)報(bào);2007年04期
9 周雅倩,郭以昆,黃萱菁,吳立德;基于最大熵方法的中英文基本名詞短語(yǔ)識(shí)別[J];計(jì)算機(jī)研究與發(fā)展;2003年03期
相關(guān)會(huì)議論文 前1條
1 姚天f ;聶青陽(yáng);李建超;李林琳;婁德成;陳珂;付宇;;一個(gè)用于漢語(yǔ)汽車(chē)評(píng)論的意見(jiàn)挖掘系統(tǒng)[A];中文信息處理前沿進(jìn)展——中國(guó)中文信息學(xué)會(huì)二十五周年學(xué)術(shù)會(huì)議論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 黃永文;中文產(chǎn)品評(píng)論挖掘關(guān)鍵技術(shù)研究[D];重慶大學(xué);2009年
相關(guān)碩士學(xué)位論文 前1條
1 吳桐;商品評(píng)論的摘要提取研究[D];北京郵電大學(xué);2015年
,本文編號(hào):2222329
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2222329.html