聚類算法在圖像修復(fù)上的應(yīng)用
[Abstract]:Image restoration is an important technology in the field of image processing. It mainly uses the existing information in the image to estimate the unknown region in the image, so that the restored image is close to the original image visually. Image restoration technology is widely used in real life. Image restoration based on sparse representation has become a new research direction. Based on the theory of sparse representation, this paper combines dictionary training and clustering method to further study image restoration technology. This paper first introduces the research background, significance and current situation of image restoration. The main research contents are: sparse representation theory, sparse representation algorithm and K-SVD dictionary learning algorithm; The advantages and disadvantages of current image restoration algorithms are analyzed. The image restoration algorithm based on sparse representation and dictionary learning is analyzed in detail. In order to ensure that the dictionary is rich in content and self-adaptive, the image of the image library is clustered before the dictionary is studied, so this paper also introduces the fuzzy clustering algorithm and its improved algorithm. Canopy algorithm is used to improve fuzzy clustering algorithm and its application on distributed platform. The simulation results show that the accuracy of Canopy-FCM algorithm is higher than that of FCM algorithm, and the distance between clusters is reduced. The RMS error and peak signal-to-noise ratio (PSNR) of the image restoration algorithm after clustering are calculated. The algorithm is better than the image restoration algorithm which only uses the image itself to be repaired for dictionary training. The algorithm makes good use of the similarity between the images, and has a good effect on the images with rich structural information. It also makes up for some shortcomings of image restoration algorithm based on K-SVD, and improves the quality of image restoration to some extent.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 余長俊;張燃;;云環(huán)境下基于Canopy聚類的FCM算法研究[J];計算機科學(xué);2014年S2期
2 虞倩倩;戴月明;;基于MapReduce的并行模糊C均值算法[J];計算機工程與應(yīng)用;2013年14期
3 李國杰;程學(xué)旗;;大數(shù)據(jù)研究:未來科技及經(jīng)濟社會發(fā)展的重大戰(zhàn)略領(lǐng)域——大數(shù)據(jù)的研究現(xiàn)狀與科學(xué)思考[J];中國科學(xué)院院刊;2012年06期
4 李民;李世華;樂翔;李小文;羅環(huán)敏;;基于學(xué)習(xí)字典的圖像修復(fù)算法[J];儀器儀表學(xué)報;2011年09期
5 張辰;夏士雄;劉兵;;一種改進(jìn)的可能模糊聚類算法[J];計算機應(yīng)用研究;2011年08期
6 張建強;鄭曉薇;吳華平;;模糊C均值聚類算法的并行化研究[J];微型機與應(yīng)用;2010年23期
7 胡正平;劉文;許成謙;李杰;;局部自適應(yīng)學(xué)習(xí)基稀疏約束結(jié)合信息優(yōu)先權(quán)選擇擴散的迭代圖像修復(fù)算法研究[J];儀器儀表學(xué)報;2010年03期
8 付紹春;樓順天;;基于區(qū)域紋理合成的圖像修補算法[J];電子與信息學(xué)報;2009年06期
9 彭秋生;魏文紅;;基于核方法的并行模糊聚類算法[J];計算機工程與設(shè)計;2008年08期
10 李麗麗;劉希玉;劉濤;孫秀娟;;一種基于粒子群優(yōu)化的FCM聚類方法[J];信息技術(shù)與信息化;2008年01期
相關(guān)博士學(xué)位論文 前1條
1 鄧承志;圖像稀疏表示理論及其應(yīng)用研究[D];華中科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 張躍飛;基于稀疏分解的圖像壓縮[D];西南交通大學(xué);2006年
,本文編號:2221216
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2221216.html