天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于Hadoop的漢語詞語搭配抽取系統(tǒng)的研究與實現(xiàn)

發(fā)布時間:2018-09-01 05:42
【摘要】:搭配是一種重復出現(xiàn)、遵從一定句法結(jié)構(gòu)但又具有任意性、不可類推的詞語組合。搭配抽取是指通過計算機的計算能力和程序設(shè)計語言從語料庫中自動提取搭配。隨著計算機技術(shù)的快速發(fā)展,自動抽取搭配已經(jīng)成為人們越來越重視的自然語言處理任務。一方面,詞語搭配抽取研究在自然語言處理領(lǐng)域的諸多應用如機器翻譯、詞義消歧、語言生成和信息檢索等方面起著重要作用,此外,詞語搭配對于語言教學、二語習得也有著十分重要的輔助作用。另一方面,隨著互聯(lián)網(wǎng)數(shù)據(jù)和大規(guī)模語料庫成為計算語言學搭配研究的重要知識來源,互聯(lián)網(wǎng)數(shù)據(jù)井噴式增長和語料庫規(guī)模的不斷擴大使得開發(fā)出有效的方法來實現(xiàn)搭配的自動抽取顯得尤為重要。本文從Google研究所的n-gram語料庫三元組數(shù)據(jù)出發(fā),以自動抽取漢語實詞類典型搭配為目的,利用Hadoop分布式計算平臺關(guān)鍵技術(shù)為主導,綜合漢語語言學知識,并借鑒統(tǒng)計學方法,研究了基于java Web和Hadoop的分布式詞語搭配檢索系統(tǒng),為用戶提供了一種智能、便捷獲取詞語搭配信息的新途徑。主要研究內(nèi)容包括首先,對現(xiàn)有的統(tǒng)計學詞語搭配抽取方法與Hadoop分布式平臺關(guān)鍵技術(shù)進行闡述,對這些方法的優(yōu)缺點進行比較分析,引入介紹搭配抽取的評估指標:準確率、召回率和F值。其次,結(jié)合漢語語言學知識和語料庫內(nèi)容,通過分析搭配詞語間詞性構(gòu)成規(guī)則,選取漢語實詞的典型搭配類型,給出漢語實詞搭配的詞性構(gòu)成描述。最后,實驗部分給出從n-gram語料庫中抽取漢語實詞典型搭配的具體實現(xiàn)方法。主要研究成果如下:(1)借鑒統(tǒng)計學的搭配抽取方法和Hadoop分布式平臺相關(guān)技術(shù),結(jié)合漢語語言學搭配詞性構(gòu)成規(guī)則,實現(xiàn)了搭配自動抽取的具體化。本文在MapReduce模式下去除稀疏數(shù)據(jù)和非中文數(shù)據(jù),調(diào)用NLPIR漢語分詞系統(tǒng)進行分詞和詞性標注,實現(xiàn)語料預處理,選擇跨距提取候選搭配集,利用搭配詞性構(gòu)成規(guī)則篩選實詞類搭配,并根據(jù)三種統(tǒng)計學方法——共現(xiàn)頻次、互信息和卡方檢驗公式計算統(tǒng)計量。采用HBase分布式數(shù)據(jù)庫對抽取的中間結(jié)果和最終結(jié)果進行存儲,構(gòu)建了漢語詞語搭配用戶詞典。(2)開發(fā)了基于Hadoop的漢語詞語搭配抽取系統(tǒng)的前臺,便于用戶有效獲取搭配信息。使用bootstrap開發(fā)框架設(shè)計了前臺頁面,實現(xiàn)了詞語檢索區(qū)域條件設(shè)置和結(jié)果展示功能。(3)總結(jié)了一種以實詞為中心詞的典型搭配的抽取方法,將這一大數(shù)據(jù)技術(shù)、語言學知識和統(tǒng)計學方法綜合的方法運用于四類實詞名詞、動詞、形容詞和副詞搭配抽取實驗,通過定量比較分析,得出基于共現(xiàn)頻率方法抽取搭配的實驗結(jié)果最優(yōu),其中名詞類搭配抽取的準確率是86%,召回率是59.72%,F值是70.49%,動詞類搭配抽取的準確率是80%,召回率是65.57%,F值是72.07%,形容詞類抽取準確率是82%,召回率是78.85%,F值是80.39%,副詞類準確率是88%,召回率是43.56%,F值是58.28%,其中形容詞和名詞類抽取的準確率較現(xiàn)有搭配抽取軟件高了2%-4%,說明該方法在漢語搭配自動抽取方面具有一定價值。
[Abstract]:Collocation is a repetitive, syntactic, but arbitrary, non-analogous combination of words. Collocation extraction refers to the automatic extraction of collocations from a corpus by computer computing power and programming language. With the rapid development of computer technology, automatic extraction of collocations has become more and more important. On the one hand, collocation extraction plays an important role in many applications in natural language processing, such as machine translation, word sense disambiguation, language generation and information retrieval. On the other hand, collocation plays an important role in language teaching and second language acquisition. Data and large-scale corpus are important sources of knowledge in Computational Linguistics collocation research. The explosive growth of Internet data and the continuous expansion of corpus size make it particularly important to develop effective methods for automatic collocation extraction. To extract typical collocations of Chinese substantive parts, a distributed word collocation retrieval system based on Java Web and Hadoop is studied by using the key technology of Hadoop distributed computing platform as the leading factor, integrating the knowledge of Chinese linguistics and referring to statistical methods. This system provides a new intelligent and convenient way for users to obtain collocation information. The research contents include: firstly, the existing statistical word collocation extraction methods and the key technologies of Hadoop distributed platform are described, the advantages and disadvantages of these methods are compared and analyzed, and the evaluation indicators of collocation extraction are introduced: accuracy, recall and F value. This paper analyzes the rules of part-of-speech formation between collocation words, selects the typical collocation types of Chinese notional words, and gives the description of the part-of-speech formation of Chinese notional words collocation. Finally, the experimental part gives the concrete implementation method of extracting Chinese notional lexical collocation from n-gram corpus. In this paper, sparse data and non-Chinese data are removed from the MapReduce model, and the NLPIR Chinese word segmentation system is called for word segmentation and part-of-speech tagging to realize corpus preprocessing, select the candidate collocation set for cross-distance extraction, and make use of lap. The matching rules are used to filter the collocation of real parts of speech, and the statistics are calculated according to three statistical methods: co-occurrence frequency, mutual information and chi-square test formula. The intermediate and final results are stored in HBase distributed database, and a Chinese word collocation user dictionary is constructed. (2) Hadoop-based Chinese word collocation dictionary is developed. The front-end page of the collocation extraction system is designed with the bootstrap development framework, and the function of setting the conditions of the word retrieval area and displaying the results is realized. (3) A typical collocation extraction method based on the content words is summarized, and this data technology, linguistic knowledge and statistics are used. Methods The comprehensive method was applied to four types of noun, verb, adjective and adverb collocation extraction experiments. Through quantitative comparative analysis, it was found that collocation extraction based on co-occurrence frequency method was the best. The accuracy rate of noun collocation extraction was 86%, recall rate was 59.72%, F value was 70.49%, verb collocation extraction was 80%. The recall rate is 65.57%, the F value is 72.07%, the accuracy of adjective extraction is 82%, the recall rate is 78.85%, the F value is 80.39%, the accuracy of adverbs is 88%, the recall rate is 43.56%, the F value is 58.28%. The accuracy of adjective and noun extraction is 2% - 4% higher than that of the existing collocation extraction software. Certain value.
【學位授予單位】:長江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.1

【相似文獻】

相關(guān)期刊論文 前8條

1 曲維光,陳小荷,吉根林;基于框架的詞語搭配自動抽取方法[J];計算機工程;2004年23期

2 乃禾;詞語搭配要得當[J];新聞通訊;1984年03期

3 王漫宇;;辭忌失朋[J];新聞戰(zhàn)線;1982年11期

4 鄧耀臣,王同順;詞語搭配抽取的統(tǒng)計方法及計算機實現(xiàn)[J];外語電化教學;2005年05期

5 王璐;張仰森;;基于典型句型的詞語搭配定量分析及提取算法[J];計算機科學;2012年S1期

6 高明陽;;淺談英語詞語搭配和教學[J];甘肅科技縱橫;2012年01期

7 羅琴琴;周江林;;基于語料庫的詞語搭配研究綜述[J];外語教育;2005年00期

8 王素格;楊軍玲;張武;;自動獲取漢語詞語搭配[J];中文信息學報;2006年06期

相關(guān)重要報紙文章 前5條

1 譚志龍;句子中,詞語搭配有講究[N];語言文字周報;2013年

2 小波;助你解決詞語搭配困惑[N];中國圖書商報;2002年

3 《語言文字報》原主編 杜永道;權(quán)力與權(quán)利[N];人民日報海外版;2011年

4 卡克西·海爾江 (哈薩克族) 努爾巴汗 譯;在翻譯中要注意文化差異[N];文藝報;2013年

5 張輝 李國清 陳群安;“只字關(guān)天”[N];湖北日報;2004年

相關(guān)博士學位論文 前3條

1 馮奇;核心句的詞語搭配研究[D];上海外國語大學;2006年

2 申修瑛;現(xiàn)代漢語詞語搭配研究[D];復旦大學;2007年

3 徐潤華;基于詞語搭配知識和語法功能匹配的句法分析器[D];南京師范大學;2013年

相關(guān)碩士學位論文 前10條

1 張曉花;藏語形容詞的結(jié)構(gòu)及搭配庫構(gòu)建研究[D];西北民族大學;2016年

2 劉慧平;注釋方式和任務投入量對高中學生英語詞語搭配附帶習得的影響[D];揚州大學;2017年

3 梁君華;高級階段詞語搭配的輸出及其對外語教學的啟示[D];上海外國語大學;2005年

4 Diana Batsenkova;中文為外語翻譯中的詞語搭配錯誤[D];上海外國語大學;2014年

5 李獻慧;中國不同階段學生英語詞語搭配現(xiàn)狀研究[D];華北電力大學(北京);2011年

6 朱鑫;詞語搭配自動抽取方法對比研究[D];大連海事大學;2011年

7 李然;英語詞語搭配教學干預對大學英語寫作的影響[D];北京林業(yè)大學;2012年

8 周智慧;多項選擇注釋和單項注釋對附帶詞語搭配學習的影響[D];華南理工大學;2012年

9 周莎莎;母語習得者與二語習得者寫作中詞語搭配的描述性研究[D];貴州大學;2009年

10 司云偉;詞語搭配及搭配不當實例分析[D];延邊大學;2003年

,

本文編號:2216281

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2216281.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c1314***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com