軟件開發(fā)與維護(hù)中需求變更應(yīng)對(duì)策略與bug管理的研究與實(shí)現(xiàn)
[Abstract]:Based on the analysis of traditional requirements and data records in bug management system, this paper accomplishes the evaluation of requirement similarity and requirement change, as well as bug repair priority, severity, report repeatability, and so on. To improve the utilization rate of historical data and user's experience in the traditional system, and design and implement the new predictive recommendation function combined with the traditional system. The main research points of this paper are as follows: (1) the traditional text classification algorithm is based on the foundation of a large number of redundant text, and the redundant information contained in the short text is limited. If the traditional text classification method is still used, the expected results are generally not achieved. This paper analyzes the inherent characteristics of the short text, from the aspects of improving the inline of the text and extending the key redundancy, the improvement experiment is carried out. It is proved that the improved algorithm can effectively improve the accuracy of short text classification. (2) the impact of requirement change is measured. The relationship between components and requirements, the importance of components, the degree of impact of requirement change and the recommendation algorithm of similar requirements are defined to measure the impact of requirement change. And provide the function of user evaluation feedback in the system to evaluate the system algorithm, system evaluation instead of manual way to achieve the purpose of unifying the evaluation standard and reducing the manual workload. (3) the priority of bug repair. Severity and repeatability of bug reports were predicted. Through the use and improvement of data mining recommendation algorithm, the bug records of open source system are judged experimentally. Through the repair prediction of bug, the problem of judging the attributes of bug is solved, which has great influence on user experience and subjectivity, and the batch prediction can be carried out. The prediction efficiency of bug attribution judgment is improved effectively. (4) based on the traditional requirement and bug management system, the recommendation prediction function is added, and the task attribution recommendation is made based on the user personal label and the user system label. In the classification prediction algorithm, we mainly draw lessons from some research achievements in recent years, and on the basis of it, we make the corresponding applicability improvement to solve the sparse problem of text vector matrix data of short text, and effectively improve the accuracy of recommendation. The system can automatically extract user tags, and can carry out personalized recommendation function.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP311.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏強(qiáng);金芝;許焱;;基于概率主題模型的物聯(lián)網(wǎng)服務(wù)發(fā)現(xiàn)[J];軟件學(xué)報(bào);2014年08期
2 劉華哠;金英;馬鵬飛;;一種需求變更影響分析方法[J];計(jì)算機(jī)研究與發(fā)展;2013年08期
3 張志飛;苗奪謙;高燦;;基于LDA主題模型的短文本分類方法[J];計(jì)算機(jī)應(yīng)用;2013年06期
4 林小俊;張猛;暴筱;李軍;吳璽宏;;基于概念網(wǎng)絡(luò)的短文本分類方法[J];計(jì)算機(jī)工程;2010年21期
5 寧亞輝;樊興華;吳渝;;基于領(lǐng)域詞語本體的短文本分類[J];計(jì)算機(jī)科學(xué);2009年03期
6 李引;李娟;李明樹;;動(dòng)態(tài)需求跟蹤方法及跟蹤精度問題研究[J];軟件學(xué)報(bào);2009年02期
7 王青,李明樹;基于SPC的軟件需求度量方法[J];計(jì)算機(jī)學(xué)報(bào);2003年10期
8 鄧景毅,葉世綺,鄭欣;軟件成熟度模型(CMM)發(fā)展綜述[J];計(jì)算機(jī)應(yīng)用研究;2002年07期
9 劉小波,郭荷清;軟件系統(tǒng)需求變更影響分析及解決方案[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年04期
10 盧梅,李明樹;軟件需求工程——方法及工具評(píng)述[J];計(jì)算機(jī)研究與發(fā)展;1999年11期
相關(guān)博士學(xué)位論文 前1條
1 王培剛;基于復(fù)雜科學(xué)管理理論的軟件需求分析研究[D];武漢大學(xué);2012年
相關(guān)碩士學(xué)位論文 前6條
1 吳太文;基于缺陷分析的軟件體系結(jié)構(gòu)退化研究[D];中南大學(xué);2013年
2 范云杰;基于維基百科的中文短文本分類研究[D];西安電子科技大學(xué);2013年
3 楊歡;軟件需求變更的影響因素和控制管理研究[D];華東理工大學(xué);2012年
4 孟憲芳;企業(yè)內(nèi)部軟件開發(fā)項(xiàng)目范圍管理研究[D];北京郵電大學(xué);2010年
5 趙志明;軟件開發(fā)項(xiàng)目中需求管理研究[D];重慶大學(xué);2008年
6 陳媛;極限編程在寬帶多媒體系統(tǒng)開發(fā)中的應(yīng)用[D];北京郵電大學(xué);2006年
,本文編號(hào):2216120
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2216120.html