天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

基于時間和空間的推薦方法研究以及應(yīng)用

發(fā)布時間:2018-08-28 11:07
【摘要】:隨著計算機網(wǎng)絡(luò)通信技術(shù)和Internet的飛速發(fā)展,信息過載是互聯(lián)網(wǎng)面臨的主要挑戰(zhàn)。隨著電子商務(wù)的發(fā)展,商家提供的商品種類和數(shù)量急劇增長.具有明確需求的用戶可通過搜索查找想購買的商品。然而,用戶需求通常具有不確定性和模糊性。隨著人們生活水平的提高,汽車的使用也越來越普遍。龐大的汽車使用人群,使得汽車的維修需求量日益增大。如何實時并且準(zhǔn)確地向汽車維修用戶提供最專業(yè)的服務(wù),為他們提供汽車維修店的完整的、具體的信息是汽車維修商和車主共同面臨的問題。個性化推薦系統(tǒng)是解決這一問題的有效手段。本文作者參加了陽揚車診APP設(shè)計與開發(fā)的部分工作,根據(jù)項目的需要,針對汽車的流動性和汽車維修數(shù)據(jù)以及動態(tài)性特點,從時間和空間的角度研究了對汽車維修的個性化推薦方法,并設(shè)計了相應(yīng)的論文推薦系統(tǒng),主要研究工作和成果如下:(1)提出了基于時間的推薦算法。將用戶-項目的評分矩陣中加入時間這個因素,將久遠的評分影響力降低,最近的評分影響力提高。對用戶之間的相似度考慮時間因子,找出用戶對其尚未表達的項目的潛在興趣度,用協(xié)同過濾的算法來解決推薦問題。實驗結(jié)果說明該算法的推薦結(jié)果比較其他相類似的推薦算法具有較高的精度。(2)提出了基于地理信息的推薦算法。將相似度和地理信息相結(jié)合進行推薦,不僅計算用戶與用戶之間的地理相似度,還計算用戶與項目之間的地理相似度。為了推薦的效果更好,該算法還將地理距離過大的用戶與項目之間的相似度默認(rèn)為零。實驗結(jié)果說明,該算法的推薦結(jié)果的準(zhǔn)確性有所提升。(3)根據(jù)陽揚車診APP的需要,設(shè)計與開發(fā)了汽車維修推薦系統(tǒng),在該系統(tǒng)中應(yīng)用了本文所提出的基于時間的推薦算法和基于地理信息的推薦算法。進行了對該系統(tǒng)的需求分析,并且將總體框架設(shè)計成多模塊層次結(jié)構(gòu),實現(xiàn)了向用戶推薦維修點和回答的推薦功能。
[Abstract]:With the rapid development of computer network communication technology and Internet, information overload is the main challenge facing the Internet. With the development of e-commerce, the types and quantity of goods provided by merchants are increasing rapidly. Users with specific needs can search for items they want to buy. However, user requirements are usually uncertain and fuzzy. With the improvement of people's living standards, the use of cars is becoming more and more common. The large number of automobile users makes the demand for vehicle maintenance increasing day by day. How to provide the most professional service to the automobile maintenance users in real time and accurately, and how to provide them with the complete information of the automobile repair shop is a common problem faced by the vehicle maintenance and vehicle owners. Personalized recommendation system is an effective method to solve this problem. The author takes part in the design and development of Yangyang vehicle diagnosis APP. According to the need of the project, according to the vehicle mobility and vehicle maintenance data and dynamic characteristics, The personalized recommendation method for vehicle maintenance is studied from the angle of time and space, and the corresponding thesis recommendation system is designed. The main research work and results are as follows: (1) A time-based recommendation algorithm is proposed. Adding the time factor to the user-project rating matrix reduces the impact of a long-term rating and increases the impact of the most recent rating. Considering the time factor to the similarity between users, we find out the potential interest of users in the items they have not yet expressed, and use collaborative filtering algorithm to solve the recommendation problem. The experimental results show that the proposed algorithm has higher accuracy than other similar recommendation algorithms. (2) A recommendation algorithm based on geographic information is proposed. By combining similarity with geographic information, not only the geographic similarity between users and users is calculated, but also the geographic similarity between users and items is calculated. In order to make the recommendation more effective, the similarity between the user and the project is zero by default. The experimental results show that the accuracy of the proposed algorithm is improved. (3) according to the need of Yangyang vehicle diagnosis APP, a vehicle maintenance recommendation system is designed and developed. In this system, the time-based recommendation algorithm and the geographic information-based recommendation algorithm are applied. The requirement analysis of the system is carried out, and the overall framework is designed into a multi-module hierarchical structure, and the function of recommending maintenance points and answers to users is realized.
【學(xué)位授予單位】:揚州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3

【參考文獻】

相關(guān)期刊論文 前10條

1 吳燎原;蔣軍;王剛;;科研社交網(wǎng)絡(luò)中基于聯(lián)合概率矩陣分解的科技論文推薦方法研究[J];計算機科學(xué);2016年09期

2 朱天宇;黃振亞;陳恩紅;劉淇;吳潤澤;吳樂;蘇喻;陳志剛;胡國平;;基于認(rèn)知診斷的個性化試題推薦方法[J];計算機學(xué)報;2017年01期

3 張亮;;基于LDA主題模型的標(biāo)簽推薦方法研究[J];現(xiàn)代情報;2016年02期

4 吳應(yīng)良;姚懷棟;李成安;;一種引入間接信任關(guān)系的改進協(xié)同過濾推薦算法[J];現(xiàn)代圖書情報技術(shù);2015年09期

5 王卓;李紅燕;王騰蛟;陳逸鵬;;一種權(quán)衡風(fēng)險收益的推薦方法[J];計算機工程與應(yīng)用;2016年03期

6 趙呈領(lǐng);陳智慧;黃志芳;;適應(yīng)性學(xué)習(xí)路徑推薦算法及應(yīng)用研究[J];中國電化教育;2015年08期

7 孟祥武;劉樹棟;張玉潔;胡勛;;社會化推薦系統(tǒng)研究[J];軟件學(xué)報;2015年06期

8 于洪;李俊華;;一種解決新項目冷啟動問題的推薦算法[J];軟件學(xué)報;2015年06期

9 任磊;;一種結(jié)合評分時間特性的協(xié)同推薦算法[J];計算機應(yīng)用與軟件;2015年05期

10 蔡志文;林建宗;;面向社會化電子商務(wù)的信任感知協(xié)同過濾推薦方法[J];計算機應(yīng)用;2015年01期

相關(guān)博士學(xué)位論文 前6條

1 高原;面向軟件重構(gòu)的推薦方法研究[D];北京理工大學(xué);2015年

2 胡勛;融合移動用戶社會化關(guān)系的協(xié)同過濾推薦方法研究[D];北京郵電大學(xué);2014年

3 孔維梁;協(xié)同過濾推薦系統(tǒng)關(guān)鍵問題研究[D];華中師范大學(xué);2013年

4 劉青文;基于協(xié)同過濾的推薦算法研究[D];中國科學(xué)技術(shù)大學(xué);2013年

5 邢星;社交網(wǎng)絡(luò)個性化推薦方法研究[D];大連海事大學(xué);2013年

6 任磊;推薦系統(tǒng)關(guān)鍵技術(shù)研究[D];華東師范大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 王欣;基于社會影響力的網(wǎng)絡(luò)用戶推薦方法研究[D];大連理工大學(xué);2015年

2 張淼;基于位置社交網(wǎng)絡(luò)的興趣點推薦方法研究[D];西南大學(xué);2015年

3 華秋云;基于網(wǎng)絡(luò)分析的推薦方法研究[D];揚州大學(xué);2014年

4 牟春苗;O2O電子商務(wù)模式中推薦方法的研究[D];東北石油大學(xué);2014年

5 黃洋;基于聚類和項目類別偏好的協(xié)同過濾推薦算法研究[D];浙江理工大學(xué);2014年

6 章詩杰;移動環(huán)境下上下文感知的協(xié)同過濾推薦模型研究[D];杭州電子科技大學(xué);2014年

7 馬萬里;股票個性化推薦方法研究[D];哈爾濱工業(yè)大學(xué);2013年

8 李湛;基于社會信任網(wǎng)絡(luò)的協(xié)同過濾推薦方法研究[D];大連理工大學(xué);2013年

9 趙麗Z,

本文編號:2209213


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2209213.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c51c9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com