天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

統(tǒng)計與結(jié)構(gòu)先驗(yàn)聯(lián)合利用的壓縮感知圖像重構(gòu)

發(fā)布時間:2018-08-27 11:19
【摘要】:在信息技術(shù)高速發(fā)展的今天,圖像作為最直觀的信息載體之一,已成為數(shù)據(jù)傳輸?shù)闹髁餍问。隨著人們對圖像質(zhì)量的要求不斷提高,對數(shù)據(jù)的需求量越來越大,傳統(tǒng)圖像壓縮與傳輸技術(shù)已難以滿足日益增長的數(shù)據(jù)帶寬需求。壓縮感知(Compressed Sensing,CS)理論應(yīng)運(yùn)而生。該理論突破傳統(tǒng)信號算法中采樣速率需遵循奈奎斯特采樣定理(Nyquist Sampling Theorem)的約束,根據(jù)信號的稀疏性或可壓縮性,對信號進(jìn)行低速壓縮采樣,采樣頻率遠(yuǎn)低于奈奎斯特采樣定律,并運(yùn)用重構(gòu)算法準(zhǔn)確(針對稀疏信號)或近似(針對可壓縮信號)準(zhǔn)確地重構(gòu)出原始信號;趬嚎s感知理論的圖像壓縮與重構(gòu)算法能夠有效地節(jié)省編碼端采樣和壓縮的資源成本,從而在數(shù)據(jù)量大且冗余度高的圖像信號壓縮與傳輸領(lǐng)域有著廣闊的應(yīng)用前景,成為該領(lǐng)域?qū)W者的研究熱點(diǎn)。圖像信號所具備的變換域稀疏性(sparsity)或可壓縮性(compressibility)為壓縮感知理論的應(yīng)用提供了前提保證。傳統(tǒng)CS圖像重構(gòu)算法僅考慮了圖像信號在小波域等變換域上的稀疏特性或可壓縮特性,但并未充分考慮對其統(tǒng)計特性和結(jié)構(gòu)特性的充分利用。圖像的小波稀疏表示形式除稀疏性外,還具有較強(qiáng)的類聚性(cluster),這表現(xiàn)在圖像信號經(jīng)小波變換后,稀疏表示系數(shù)層間呈現(xiàn)的樹狀結(jié)構(gòu)關(guān)系及層內(nèi)表現(xiàn)出的統(tǒng)計相依分布。本文針對圖像小波稀疏表示系數(shù)的特性,從統(tǒng)計先驗(yàn)角度和結(jié)構(gòu)先驗(yàn)角度分別對圖像進(jìn)行模型分析及研究,并將結(jié)構(gòu)先驗(yàn)?zāi)P团c統(tǒng)計先驗(yàn)?zāi)P头謩e融入經(jīng)典重構(gòu)算法中,取得了較好的重構(gòu)效果。為進(jìn)一步提高圖像壓縮感知重構(gòu)算法的重構(gòu)質(zhì)量與效率,本文創(chuàng)新性地提出統(tǒng)計與結(jié)構(gòu)先驗(yàn)聯(lián)合利用的CS圖像重構(gòu)算法,對圖像信號的稀疏表示形式進(jìn)行層內(nèi)層間建模,利用多重先驗(yàn)信息對經(jīng)典重構(gòu)算法進(jìn)行優(yōu)化:針對圖像小波表示系數(shù)的層內(nèi)層間關(guān)系,利用高斯尺度混合模型對系數(shù)局部建模,并利用系數(shù)層間樹結(jié)構(gòu)模型對其進(jìn)行結(jié)構(gòu)約束,應(yīng)用迭代閾值算法求解稀疏表示系數(shù)估計值,最終利用少量采樣值實(shí)現(xiàn)高質(zhì)高效的圖像重構(gòu)。本文對所提算法以及經(jīng)典CS圖像重構(gòu)算法進(jìn)行仿真比較,測試結(jié)果表明,聯(lián)合利用統(tǒng)計與結(jié)構(gòu)先驗(yàn)的CS圖像重構(gòu)算法在圖像的重構(gòu)性能上有明顯優(yōu)化。對于重構(gòu)精度,峰值信噪比較單一模型下的重構(gòu)算法最高提升4dB左右,重構(gòu)速度也有較大提升,是集高效性與實(shí)用性為一體的CS圖像重構(gòu)算法。
[Abstract]:With the rapid development of information technology, image, as one of the most intuitive information carriers, has become the mainstream form of data transmission. With the increasing demand for image quality and the increasing demand for data, the traditional image compression and transmission technology is difficult to meet the increasing demand of data bandwidth. The theory of compressed perception (Compressed Sensing,CS) came into being. This theory breaks through the constraint of Nyquist sampling theorem (Nyquist Sampling Theorem) in the traditional signal algorithm. According to the sparsity or compressibility of the signal, the signal is compressed at low speed and the sampling frequency is much lower than that of Nyquist sampling law. The original signal is reconstructed accurately by using reconstruction algorithm (for sparse signal) or approximate (for compressible signal). The algorithm of image compression and reconstruction based on the theory of compression perception can save the cost of sampling and compression in the coding end effectively, so it has a broad application prospect in the field of image signal compression and transmission, which has a large amount of data and high redundancy. It has become the research hotspot of scholars in this field. The transform domain sparse (sparsity) or compressible (compressibility) of image signal provides a prerequisite for the application of compression sensing theory. The traditional CS image reconstruction algorithm only considers the sparse or compressible characteristics of the image signal in the domain of wavelet transform, but does not fully consider the full use of its statistical and structural characteristics. In addition to sparsity, the wavelet sparse representation of images also has a strong clustering (cluster),. After wavelet transform, the sparse representation shows the tree structure relationship among the coefficient layers and the statistical dependence distribution in the layers. In this paper, according to the characteristics of sparse representation coefficients of image wavelet, the image model is analyzed and studied from the perspective of statistical priori and structural priori, and the structural priori model and statistical priori model are incorporated into the classical reconstruction algorithm, respectively. Good reconstruction effect has been achieved. In order to improve the reconstruction quality and efficiency of the image compression perceptual reconstruction algorithm, a novel CS image reconstruction algorithm based on statistical and structural priori is proposed in this paper, in which the sparse representation of image signals is modeled between layers. The classical reconstruction algorithm is optimized by using multiple prior information. According to the interlayer relationship of image wavelet representation coefficient, Gao Si scale mixed model is used to model the coefficient locally, and the coefficient interlayer tree structure model is used to constrain the coefficient. An iterative threshold algorithm is used to solve the estimation of sparse representation coefficients, and a small number of sampling values are used to achieve high quality and efficient image reconstruction. In this paper, the proposed algorithm and the classical CS image reconstruction algorithm are simulated and compared. The test results show that the combined use of statistical and structural priori CS image reconstruction algorithm has obvious optimization in image reconstruction performance. For the reconstruction accuracy, the peak signal-to-noise ratio (PSNR) algorithm can improve the 4dB and the reconstruction speed greatly. It is a CS image reconstruction algorithm with high efficiency and practicability.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前3條

1 何宜寶;畢篤彥;;基于廣義拉普拉斯分布的圖像壓縮感知重構(gòu)[J];中南大學(xué)學(xué)報(自然科學(xué)版);2013年08期

2 練秋生;肖瑩;;基于小波樹結(jié)構(gòu)和迭代收縮的圖像壓縮感知算法研究[J];電子與信息學(xué)報;2011年04期

3 練秋生;王艷;;基于雙樹小波通用隱馬爾可夫樹模型的圖像壓縮感知[J];電子與信息學(xué)報;2010年10期

,

本文編號:2207120

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2207120.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b06b9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
久久中文字人妻熟女小妇| 欧美午夜国产在线观看| 国产精品亚洲综合色区韩国| 色婷婷激情五月天丁香| 中文久久乱码一区二区| 欧美日韩一级黄片免费观看| 亚洲欧美一二区日韩高清在线| 亚洲国产成人精品一区刚刚| 色综合视频一区二区观看| 老司机亚洲精品一区二区| 久久99热成人网不卡| 午夜小视频成人免费看| 亚洲中文字幕三区四区| 色婷婷在线精品国自产拍| 伊人色综合久久伊人婷婷| 成年人免费看国产视频| 欧美日韩免费观看视频| 在线日韩中文字幕一区| 欧美日韩在线视频一区| 国产精品刮毛视频不卡| 六月丁香六月综合缴情| 又色又爽又黄的三级视频| 午夜福利视频六七十路熟女| 亚洲日本加勒比在线播放| 91蜜臀精品一区二区三区| 国产欧美日韩视频91| 国产一区一一一区麻豆| 99久热只有精品视频最新| 午夜精品一区二区av| 福利视频一区二区在线| 成年人免费看国产视频| 日韩欧美精品一区二区三区| 精品丝袜一区二区三区性色| 国产一级片内射视频免费播放| 国产精品香蕉免费手机视频| 亚洲中文字幕在线观看四区| 日本午夜精品视频在线观看| 五月天六月激情联盟网| 亚洲av秘片一区二区三区| 日韩中文字幕在线不卡一区| 91人妻人人澡人人人人精品|