雙色印鐵機印刷質(zhì)量控制系統(tǒng)關(guān)鍵技術(shù)研究
[Abstract]:With the improvement of living standard, people put forward higher requirements for printing quality. The printing quality control system in two-color iron printing machine is the key factor to determine the quality of printing materials, so it has high research value. Aiming at the shortage of printing quality control system of two-color iron printing machine in our country, this paper designs the printing quality control system of two-color iron printing machine using image processing and pattern recognition technology. The main research contents are as follows: according to the quality control requirements of sheet metal printing, a set of color printing dot image acquisition device based on machine vision is built. The hardware selection of CCD digital camera and image acquisition card is completed by combining the size and precision of collecting color print image. According to the characteristics of different color spaces, the appropriate color space f1fStats is selected, and a standard sample of print dot images containing information of 9 color patterns is designed and made. On this basis, a fuzzy C-means clustering method with anisotropic weights is proposed to collect data samples from each color pattern class by (AWFCM). Finally, a competitive learning algorithm is used to compress the image information. In view of the complexity and diversity of color pattern of color print dot image, the coarse separator constructed by extreme learning machine (ELM) is used to identify the color pattern of dot image. Then the fine splitter constructed by the neural network group is used to further classify the color patterns of dot images, in which each sub-network recognizes the color patterns of pixels separately. Then the output results of each subnetwork are integrated by the fuzzy integration method in information fusion, and the classification accuracy is further improved. In this paper, an improved PID neural network algorithm is proposed to adjust the ink bond opening of the printing machine, and the simulation analysis is carried out by using MATLAB. The simulation results show that the proposed PID neural network algorithm has good stability and convergence speed and can meet the requirements of print quality system control. Finally, the printing quality control system is developed with C # language, and the system function is realized.
【學位授予單位】:南京理工大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TS85;TP391.41
【相似文獻】
相關(guān)期刊論文 前4條
1 李沛;;多媒體資源庫圖像數(shù)據(jù)壓縮和存儲技術(shù)研究[J];煤炭技術(shù);2012年06期
2 張樂平;;SAR浮點圖像數(shù)據(jù)壓縮[J];江西理工大學學報;2009年04期
3 童培莉;一種基于多媒體技術(shù)的新型并行DCT算法[J];中國煙草學報;2001年04期
4 ;[J];;年期
相關(guān)會議論文 前4條
1 韓學為;費向東;王用杰;趙巍;;數(shù)字醫(yī)療圖像的顯示技術(shù)及實現(xiàn)[A];中國自動化學會、中國儀器儀表學會2004年西南三省一市自動化與儀器儀表學術(shù)年會論文集[C];2004年
2 鄭建華;李保和;唐衛(wèi)華;楊濤;;神經(jīng)網(wǎng)絡圖像數(shù)據(jù)壓縮系統(tǒng)的DSP實現(xiàn)[A];中國圖象圖形學會第十屆全國圖像圖形學術(shù)會議(CIG’2001)和第一屆全國虛擬現(xiàn)實技術(shù)研討會(CVR’2001)論文集[C];2001年
3 譚勵;于重重;;普通高校計算機圖形和圖像實驗室建設的思考[A];廣西計算機學會2005年學術(shù)年會論文集[C];2005年
4 劉成文;趙紅怡;;基于多平臺的圖像編解碼研究與技術(shù)實現(xiàn)[A];2007通信理論與技術(shù)新發(fā)展——第十二屆全國青年通信學術(shù)會議論文集(上冊)[C];2007年
相關(guān)博士學位論文 前3條
1 高建貞;基于圖像分析的道路病害自動檢測研究[D];南京理工大學;2003年
2 劉祖根;圖像隱寫分析算法研究[D];浙江大學;2007年
3 周國輝;CCD攝影測量相機圖像數(shù)據(jù)高速實時存儲的研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2006年
相關(guān)碩士學位論文 前10條
1 王志楠;鑄坯表面測溫圖像數(shù)據(jù)壓縮的網(wǎng)絡傳輸應用研究[D];東北大學;2011年
2 黃仁尊;SAR圖像降噪算法工程化實現(xiàn)方法研究[D];西安電子科技大學;2014年
3 李桃;高清圖像話音同傳編解碼系統(tǒng)設計[D];南京郵電大學;2016年
4 顏釗;一種星載凝視圖像無損/近無損壓縮系統(tǒng)設計與實現(xiàn)[D];華中科技大學;2015年
5 闞海濤;雙色印鐵機印刷質(zhì)量控制系統(tǒng)關(guān)鍵技術(shù)研究[D];南京理工大學;2016年
6 劉欣;圖像信息隱藏及相關(guān)檢測技術(shù)的研究[D];西北工業(yè)大學;2005年
7 翟國;基于提升小波的醫(yī)學圖像混合編碼的研究[D];江蘇大學;2009年
8 陳猛;基于TMS320DM270的圖像處理平臺的開發(fā)[D];華東師范大學;2006年
9 周華貴;基于TMS320DM270的圖像處理平臺的開發(fā)[D];中國農(nóng)業(yè)大學;2005年
10 萬建邦;圖像有損壓縮方法研究[D];北京化工大學;2005年
,本文編號:2204250
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2204250.html