面向中文在線評論意見的挖掘算法研究及應用
[Abstract]:With the development of online shopping industry, more and more consumers publish comments on shopping websites. Product reviews reflect consumer attitudes and opinions on products and are of practical value. On the one hand, product review can affect the purchase intention of other consumers; on the other hand, product review feedback the information of all aspects of the product, which is convenient for merchants to improve the quality of products and services. However, it is very difficult to get meaningful information from a large amount of product review text data in a short time. It is important to study the mining method of Chinese comments for improving the efficiency of text information extraction. The main contents of this paper are as follows: firstly, the subjective comment text is separated from the product review by artificial method. Then the text of Chinese online comments is preprocessed by natural language processing technology. In order to solve the problem of low recall and low precision of Chinese product comment information mining, an improved Chinese online comment mining algorithm is proposed in this paper. According to the natural language expression, the commentary text is divided into four types of sentence structure. Then, product comment words and feature words are extracted from all kinds of comments based on adverbs. The experimental results show that this method can effectively improve the recall and precision of Chinese product comment mining. Based on the extended version of synonym forest, the extracted product features are combined with the synonyms in the opinion words, then pruned according to the support threshold, the final feature words and opinion words are obtained. Experiments show that this method improves the accuracy of synonym merging. The improved mining method of comments on Chinese products can make full use of the characteristics of natural language expression and realize the automatic extraction of comment features and words of Chinese products.
【學位授予單位】:西安科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.1
【參考文獻】
相關期刊論文 前10條
1 劉紅光;馬雙剛;劉桂鋒;;基于降噪自動編碼器的中文新聞文本分類方法研究[J];現代圖書情報技術;2016年06期
2 歐陽柳波;尹勝臺;;層疊推理機的設計與實現[J];計算機應用與軟件;2014年10期
3 張乃靜;鞠洪波;紀平;;基于本體的林業(yè)領域文檔特征權重模型[J];計算機工程與應用;2013年18期
4 羅寧;徐俊剛;;Web數據挖掘在電子商務中的應用[J];電子技術;2012年04期
5 鄭艷紅;張東站;;基于同義詞詞林的文本特征選擇方法[J];廈門大學學報(自然科學版);2012年02期
6 田久樂;趙蔚;;基于同義詞詞林的詞語相似度計算方法[J];吉林大學學報(信息科學版);2010年06期
7 吳思穎;吳揚揚;;基于中文WordNet的中英文詞語相似度計算[J];鄭州大學學報(理學版);2010年02期
8 李曉紅;;中文文本分類中的特征詞抽取方法[J];計算機工程與設計;2009年17期
9 姚天f ;程希文;徐飛玉;漢思·烏思克爾特;王睿;;文本意見挖掘綜述[J];中文信息學報;2008年03期
10 姚天f ;婁德成;;漢語語句主題語義傾向分析方法的研究[J];中文信息學報;2007年05期
相關會議論文 前1條
1 顏偉;荀恩東;;基于WordNet的英語詞語相似度計算[A];第二屆全國學生計算語言學研討會論文集[C];2004年
相關碩士學位論文 前4條
1 張宇晨;基于圖結構的多關鍵字查詢技術研究[D];南京郵電大學;2016年
2 陳琪;基于意見挖掘的網絡課程評價研究[D];山東師范大學;2013年
3 金希茜;基于語義相似度的中文文本相似度算法研究[D];浙江工業(yè)大學;2009年
4 陸浩;網絡輿情監(jiān)測研究與原型實現[D];北京郵電大學;2009年
,本文編號:2198172
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2198172.html