天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于卷積神經(jīng)網(wǎng)絡的人臉識別系統(tǒng)設計與實現(xiàn)

發(fā)布時間:2018-08-22 07:11
【摘要】:隨著社會的不斷發(fā)展,人們的身份信息在生產(chǎn)生活中顯得越來越重要。人臉識別技術不僅是計算機視覺研究的熱點,而且在安保、金融、電子政務等多個領域得到了廣泛應用。本文中主要是研究了深度學習方法中卷積神經(jīng)網(wǎng)絡的模型在自然場景下人臉識別的相關應用。與傳統(tǒng)的人臉識別的方法相比深度卷積神經(jīng)網(wǎng)絡的模型不需要人工進行相對復雜并且耗時的特征提取的算法設計,我們只需要選擇或設計一個有效的神經(jīng)網(wǎng)絡模型,并在大量的訓練樣本上進行簡單高效的訓練,便可提取出圖像的特征并獲得相對較好的分類準確率。這種方法的性能和效果主要取決于網(wǎng)絡結構的設計,因此在本文研究過程中,將重點放在如何構建一個合理的網(wǎng)絡模型上,并采取相關的技術使其在訓練集上能夠快速穩(wěn)定的收斂,最終還要獲得良好的識別效果。本論文主要對人臉檢測和人臉識別的方法進行了分析、優(yōu)化和實現(xiàn)。在人臉檢測過程中,將Haar特征與Adaboost算法相結合起來,并運用積分圖的方法來加快Haar特征的求值計算,從而快速高效的實現(xiàn)人臉檢測。該模塊不僅實現(xiàn)了靜態(tài)的人臉檢測和動態(tài)的人臉檢測兩部分的功能,并且將人臉檢測嵌入到人臉識別的系統(tǒng)中,提高人臉識別的效率。在人臉識別過程中,通過合理的減少原VGG卷積神經(jīng)網(wǎng)絡訓練參數(shù),得到了改進的VGG網(wǎng)絡模型,并使用比隨機初始化更好地參數(shù)初始化方法來縮減模型的收斂時間,最終該新模型不僅解決了原VGG模型對硬件要求高、訓練困難等方面的問題,而且成功的應用于自然環(huán)境下的人臉識別,并在嚴格預處理后的LFW(Labeled Faces in the Wild)人臉數(shù)據(jù)庫上進行實驗,獲得了92%的準確率。在本論文中將上述的模型算法應用于實際場景中,實現(xiàn)了一個實時的人臉識別系統(tǒng)。并對系統(tǒng)各個模塊的功能和流程進行詳細介紹,并在自建的人臉數(shù)據(jù)庫上進行了運用,達到了94%的準確度。該系統(tǒng)驗證了本文方法的有效性,達到了人臉識別的應用要求。
[Abstract]:With the development of society, people's identity information becomes more and more important in production and life. Face recognition is not only a hot topic in computer vision, but also widely used in many fields such as security, finance, electronic government and so on. In this paper, the application of convolution neural network model in the deep learning method to face recognition in natural scene is studied. Compared with the traditional face recognition method, the model of deep convolution neural network does not need to design a relatively complex and time-consuming feature extraction algorithm, so we only need to select or design an effective neural network model. With a large number of training samples, the image features can be extracted and a relatively good classification accuracy can be obtained by a simple and efficient training. The performance and effect of this method mainly depend on the design of network structure, so in the research process of this paper, the emphasis is on how to build a reasonable network model. The related techniques are adopted to make the training set converge quickly and stably, and finally a good recognition effect is obtained. In this paper, the methods of face detection and face recognition are analyzed, optimized and realized. In the process of face detection, the Haar feature is combined with the Adaboost algorithm, and the method of integral graph is used to speed up the evaluation of Haar features, so that face detection can be realized quickly and efficiently. This module not only realizes the functions of static face detection and dynamic face detection, but also embeds face detection into face recognition system to improve the efficiency of face recognition. In the process of face recognition, by reasonably reducing the training parameters of the original VGG convolution neural network, the improved VGG network model is obtained, and the convergence time of the model is reduced by using a better parameter initialization method than the random initialization method. Finally, the new model not only solves the problems of high hardware requirement and difficult training of the original VGG model, but also successfully applies to face recognition in the natural environment, and carries on the experiment on the LFW (Labeled Faces in the Wild) face database after strict preprocessing. The accuracy rate is 92%. In this paper, a real-time face recognition system is implemented by applying the above model algorithm to the real-time scene. The function and flow of each module of the system are introduced in detail, and applied in the self-built face database, and the accuracy is 94%. The system verifies the effectiveness of this method and meets the requirements of face recognition.
【學位授予單位】:濟南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41;TP183

【參考文獻】

相關期刊論文 前10條

1 陳耀丹;王連明;;基于卷積神經(jīng)網(wǎng)絡的人臉識別方法[J];東北師大學報(自然科學版);2016年02期

2 王茜;張海仙;;深度學習框架Caffe在圖像分類中的應用[J];現(xiàn)代計算機(專業(yè)版);2016年05期

3 盧宏濤;張秦川;;深度卷積神經(jīng)網(wǎng)絡在計算機視覺中的應用研究綜述[J];數(shù)據(jù)采集與處理;2016年01期

4 肖陽;;人臉檢測算法綜述[J];電子技術與軟件工程;2014年04期

5 曹瑩;苗啟廣;劉家辰;高琳;;AdaBoost算法研究進展與展望[J];自動化學報;2013年06期

6 陳淑玲;;基于特征臉法的人臉識別算法[J];長江大學學報(自然科學版);2012年12期

7 陳志恒;姜明新;;基于openCV的人臉檢測系統(tǒng)的設計[J];電子設計工程;2012年10期

8 趙秀萍;;生物特征識別技術發(fā)展綜述[J];刑事技術;2011年06期

9 曾岳;馮大政;何新田;;基于二值數(shù)據(jù)貝葉斯子空間的人臉識別算法[J];計算機工程;2011年05期

10 張瑩;李勇平;敖新宇;;基于OpenCV的通用人臉檢測模塊設計[J];計算機工程與科學;2011年01期

相關博士學位論文 前3條

1 李根;基于局部特征和進化算法的人臉識別[D];吉林大學;2014年

2 唐亮;面向人臉識別的子空間分析和分類方法研究[D];浙江大學;2009年

3 山世光;人臉識別中若干關鍵問題的研究[D];中國科學院研究生院(計算技術研究所);2004年

相關碩士學位論文 前7條

1 楊楠;基于Caffe深度學習框架的卷積神經(jīng)網(wǎng)絡研究[D];河北師范大學;2016年

2 萬士寧;基于卷積神經(jīng)網(wǎng)絡的人臉識別研究與實現(xiàn)[D];電子科技大學;2016年

3 葉浪;基于卷積神經(jīng)網(wǎng)絡的人臉識別研究[D];東南大學;2015年

4 葉睿;基于深度學習的人臉檢測方法研究[D];哈爾濱工業(yè)大學;2015年

5 林鵬;基于Adaboost算法的人臉檢測研究及實現(xiàn)[D];西安理工大學;2007年

6 吳松松;人臉識別的線性子空間方法研究[D];南京林業(yè)大學;2007年

7 鄧少濵;幾種人臉檢測方法的研究[D];南京理工大學;2003年

,

本文編號:2196345

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2196345.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶d08f1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com