基于膠囊內(nèi)窺鏡圖像的出血病灶檢測算法研究
[Abstract]:Nowadays, gastrointestinal diseases have become a major threat to human health. As a traditional means of detecting gastrointestinal diseases, mechanical endoscopy is not only inconvenient to operate, but also brings physical pain to patients. However, the number of digestive tract images produced by capsule endoscopy is tens of thousands, which brings heavy burden to medical staff and increases the misdiagnosis rate. To solve these problems, capsule endoscopy and capsule-based endoscopy are introduced in this paper. Based on the research status of bleeding lesion detection technology in endoscopy image at home and abroad, the bleeding lesion detection technology based on capsule endoscopy image is deeply studied. The main work includes: image preprocessing, region of interest extraction based on color features, classification and recognition based on color similarity and connected area area. There are two kinds of traditional algorithms for detecting hemorrhage based on capsule endoscopy image: one is to divide the image into fixed size regions, which will destroy the boundary information contained in the image itself and lead to low accuracy; the other is the whole image. This algorithm can reflect the information of the original image to the greatest extent, but the speed of the detection algorithm is too slow because of the large amount of data. Considering the speed of the algorithm and the original edge information of the image, this paper firstly extracts the region of interest in the RGB color space using color boundary box to reduce the redundant information of the image. Finally, the algorithm is validated by experiments. The results show that the sensitivity and specificity of the algorithm are 91% and 88% respectively, which basically realize the capsule. Automatic detection of bleeding lesions can be applied to practical treatment.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:R57;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 滕秀花;胡文瑜;陳敏;;一種基于SLIC的超像素快速色彩傳遞算法[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報;2014年03期
2 石煜;顏國正;朱柄全;;視頻膠囊內(nèi)窺鏡無線能量接收系統(tǒng)的設(shè)計[J];儀器儀表學(xué)報;2014年03期
3 林睿;王邦茂;樸美玉;;OMOM膠囊內(nèi)鏡在小腸疾病診斷中的應(yīng)用[J];江蘇醫(yī)藥;2013年19期
4 孫賢久;李學(xué)謙;秦先鋒;蘇劍東;劉美紅;張莉;江堤;劉玉杰;朱惠明;;OMOM膠囊內(nèi)鏡對小腸疾病的診斷[J];吉林醫(yī)學(xué);2013年27期
5 賈智偉;顏國正;石煜;樊紹勝;;生理參數(shù)遙測系統(tǒng)無線供能模塊的設(shè)計[J];納米技術(shù)與精密工程;2014年02期
6 王曉麗;趙潔;馬阿火;;小腸疾病123例OMOM膠囊內(nèi)鏡診斷結(jié)果分析[J];中國鄉(xiāng)村醫(yī)藥;2013年18期
7 曲寶戈;王慧;潘錦敦;喬瑞玲;任光鶯;;OMOM膠囊內(nèi)鏡在老年人胃和小腸檢查中的應(yīng)用[J];胃腸病學(xué)和肝病學(xué)雜志;2013年06期
8 付延安;孟慶虎;張偉;;基于超像素分割的無線內(nèi)窺鏡出血圖像檢測[J];吉林大學(xué)學(xué)報(工學(xué)版);2013年02期
9 潘國兵;顏國正;宋昕帥;邱祥玲;;膠囊內(nèi)窺圖像出血檢測中顏色向量相似系數(shù)分類器的設(shè)計[J];上海交通大學(xué)學(xué)報;2009年11期
10 謝翔;李國林;張春;王志華;;一種雙向、數(shù)字式微型無線內(nèi)窺鏡系統(tǒng)設(shè)計[J];固體電子學(xué)研究與進展;2007年01期
相關(guān)碩士學(xué)位論文 前1條
1 王微微;體外磁驅(qū)動診療膠囊系統(tǒng)研究[D];上海交通大學(xué);2013年
,本文編號:2194501
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2194501.html