基于深度神經(jīng)網(wǎng)絡(luò)的韻律結(jié)構(gòu)預(yù)測研究
[Abstract]:The prediction of Chinese prosody plays an important role in the naturalness of synthetic speech. This paper focuses on how to improve the prediction accuracy of prosodic hierarchical structure. In the former statistical prosodic structure prediction model, POS (Part of Speech) feature is often used in the selection of input features for shallow information, which can not use semantic information of words, and the selected features are lack of correlation between words and words. The phenomenon of lexical gap is often formed, resulting in even synonyms can not show the corresponding relevance. Therefore, it is necessary to use a kind of expression which can reflect the relevance of words as the input feature of the model. In model selection, hidden Markov model and decision tree model have been successful in prosodic structure prediction, but some problems such as narrow scope of application and over-fitting will occur. With the increasing complexity of data, it is necessary to use a more powerful modeling method for data, while the depth neural network has a good ability to model complex data. Therefore, this paper focuses on the prosodic structure prediction model based on depth neural network model with word vector as input feature. On the one hand, we train the word vector, construct the prosodic word vector from the word vector, and use the compound vector as the input of the model; on the other hand, we improve the traditional neural network model. The hidden layer of neural network can better capture the interaction between words and words. The main work includes: (1) configure Gensim word vector training module, train word vector through Gensim module, use trained word vector to learn prosodic word vector, grab prosodic level information in context by different level vector; (2) training neural network model with prosodic level tagging data, using dictionary word vector, prosodic word vector, preword prosodic level vector and word length vector of current word as step input features. The prediction ability of the model is improved by using the compound input feature in the input layer of the model. (3) the hidden layer of the model is improved by adding the Zhang Liang matrix to the hidden layer, and the words and words are captured by the Zhang Liang matrix. The relationship between different prosodic levels verifies the prediction ability of the prosodic structure from the aspects of window length spatial dimension the number of hidden layer units input features and so on. The experimental results show that the error rate of prosodic words decreases by 3.2% (from 15.3% to 12.1%) and the error rate of prosodic phrases decreases by 5% (from 40.3% to 35.3%) compared with the prediction results of single word vector. After adding Zhang Liang matrix to the hidden layer, the error rate of prosodic words decreased by 0.5% (from 12.1% to 11.6%). The experimental results show that the compound input feature can effectively improve the error rate of prosodic prediction and that the hidden layer with Zhang Liang matrix can capture the information between prosodic levels better than the ordinary hidden layer.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.1
【相似文獻(xiàn)】
相關(guān)會議論文 前8條
1 李雅;盧穎超;許小穎;陶建華;;連續(xù)語流中韻律層級和調(diào)型組合對重音感知的影響[A];第九屆中國語音學(xué)學(xué)術(shù)會議論文集[C];2010年
2 鄭秋豫;;語流中韻律結(jié)構(gòu)的主要徵信[A];第六屆全國人機(jī)語音通訊學(xué)術(shù)會議論文集[C];2001年
3 張錦玉;;普通話語篇停延與呼吸特征初探[A];第九屆中國語音學(xué)學(xué)術(shù)會議論文集[C];2010年
4 梁潔;楊新璐;;維漢廣播新聞韻律層級邊界特征研究[A];第十一屆全國人機(jī)語音通訊學(xué)術(shù)會議論文集(一)[C];2011年
5 李雅;盧穎超;許小穎;陶建華;;連續(xù)語流中韻律層級和調(diào)型組合對重音感知的影響[A];第十一屆全國人機(jī)語音通訊學(xué)術(shù)會議論文集(二)[C];2011年
6 李雅;盧穎超;許小穎;陶建華;;連續(xù)語流中韻律層級和調(diào)型組合對重音感知的影響[A];第十一屆全國人機(jī)語音通訊學(xué)術(shù)會議論文集(一)[C];2011年
7 王天慶;李愛軍;;基于SFC模型的韻律詞音高模式研究[A];第八屆全國人機(jī)語音通訊學(xué)術(shù)會議論文集[C];2005年
8 曹劍芬;;漢語韻律切分的語音學(xué)和語言學(xué)線索[A];新世紀(jì)的現(xiàn)代語音學(xué)——第五屆全國現(xiàn)代語音學(xué)學(xué)術(shù)會議論文集[C];2001年
相關(guān)重要報紙文章 前1條
1 記者胡言午 通訊員黃立鶴;工程技術(shù)手段推動韻律研究[N];中國社會科學(xué)報;2012年
相關(guān)博士學(xué)位論文 前1條
1 于澤;書面韻律信息的作用及其加工機(jī)制的即時加工研究[D];遼寧師范大學(xué);2011年
相關(guān)碩士學(xué)位論文 前1條
1 王琦;基于深度神經(jīng)網(wǎng)絡(luò)的韻律結(jié)構(gòu)預(yù)測研究[D];北京交通大學(xué);2016年
,本文編號:2191200
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2191200.html