基于流形學(xué)習(xí)的數(shù)據(jù)降維技術(shù)及工程應(yīng)用研究
[Abstract]:With the rapid breakthrough of artificial intelligence and big data technology, machine learning and data mining, which are the core research fields of artificial intelligence, often get high dimensional, nonlinear data. Taking analog circuit fault diagnosis as an example, especially in a highly integrated circuit board fault location, because of the large number of components and tolerance, the collected data tend to be distributed in high dimension and nonlinear structure. For these large-scale, high-dimensional nonlinear data, people want to intuitively perceive the useful knowledge hidden in high-dimensional data, it is difficult to imagine. Data dimensionality reduction is one of the most effective ways to reduce the dimensionality of high dimensional data. Data dimensionality reduction can be divided into linear reduction and nonlinear dimensionality reduction. Linear dimensionality reduction technology is widely used, but it has poor effect on practical engineering applications containing a large amount of nonlinear data, which makes nonlinear dimensionality reduction technology become a hot research topic at present. In order to obtain the low-dimensional representation of high-dimensional and incomprehensible data, the locally linear embedding dimension reduction method based on manifold learning makes use of the assumptions of local linearity and global nonlinearity to reduce the dimensionality of high-dimensional data. The original structure of high-dimensional data can still be maintained. This characteristic makes it one of the hotspots in the field of machine learning. In this paper, the problem of feature reduction and feature extraction using locally linear embedded (Local Linear embedded LLE technique based on manifold learning method is studied. In order to solve the problem of high characteristic dimension in analog circuit fault diagnosis engineering, a new feature dimension reduction scheme based on wavelet packet decomposition and LLE algorithm is proposed. Fault feature dimension reduction technique based on clonal selection algorithm is studied in this paper. The experimental results verify the applicability of the proposed algorithm in the characteristic dimensionality reduction problem of analog circuit fault diagnosis, which provides a useful reference for the engineering application of LLE algorithm in complex data dimensionality reduction.
【學(xué)位授予單位】:北方工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 廖劍;周紹磊;史賢俊;王朕;;模擬電路故障特征降維方法[J];振動(dòng).測試與診斷;2015年02期
2 毛向德;王慶賢;董唯光;梁金平;朱科;;小波包神經(jīng)網(wǎng)絡(luò)與數(shù)據(jù)降維的移相全橋變換器的故障診斷[J];電源學(xué)報(bào);2014年04期
3 彭良玉;禹旺兵;;基于小波分析和克隆選擇算法的模擬電路故障診斷[J];電工技術(shù)學(xué)報(bào);2007年06期
4 肖人彬,王磊;人工免疫系統(tǒng):原理、模型、分析及展望[J];計(jì)算機(jī)學(xué)報(bào);2002年12期
相關(guān)會(huì)議論文 前1條
1 劉新東;;基于LLE和SVM的模擬電路軟故障診斷[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 雷迎科;流形學(xué)習(xí)算法及其應(yīng)用研究[D];中國科學(xué)技術(shù)大學(xué);2011年
2 詹宇斌;流形學(xué)習(xí)理論與方法及其應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2011年
3 李波;基于流形學(xué)習(xí)的特征提取方法及其應(yīng)用研究[D];中國科學(xué)技術(shù)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 陳磊;基于線性子空間與流形學(xué)習(xí)的人臉識(shí)別算法研究[D];西安電子科技大學(xué);2014年
2 王勤勇;基于人工免疫技術(shù)的模擬電路故障診斷技術(shù)[D];北方工業(yè)大學(xué);2013年
3 閆志敏;基于流形學(xué)習(xí)的數(shù)據(jù)約簡方法研究與應(yīng)用[D];山東師范大學(xué);2012年
4 唐文俊;基于流形學(xué)習(xí)的數(shù)據(jù)降維的研究[D];廣東工業(yè)大學(xué);2012年
5 宋麗偉;基于小波分析和神經(jīng)網(wǎng)絡(luò)的模擬電路故障診斷[D];湖南大學(xué);2012年
6 臧家鵬;互聯(lián)網(wǎng)環(huán)境下企業(yè)信息獲取與加工技術(shù)及應(yīng)用探究[D];華中科技大學(xué);2012年
7 羅琨;基于小波分析和人工神經(jīng)網(wǎng)絡(luò)的容差模擬電路故障診斷[D];湖南大學(xué);2011年
8 黃移軍;基于局部線性嵌入的高維數(shù)據(jù)降維研究[D];中南大學(xué);2009年
9 李盛丹;基于VC++和MATLAB的車型分類及車輛計(jì)數(shù)系統(tǒng)[D];東北師范大學(xué);2009年
10 王超;基于流形學(xué)習(xí)的有監(jiān)督降維方法研究[D];中國科學(xué)技術(shù)大學(xué);2009年
,本文編號(hào):2189820
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2189820.html