基于模板匹配的視覺分揀方法及應(yīng)用研究
[Abstract]:With the wide application of intelligent equipment in industrial production, machine vision as an important branch of intelligent equipment has received great attention. And domestic visual processing software has been performing poorly in terms of speed, anti-jamming, and so on, although many domestic enterprises and research institutions are doing related research. But the domestic market has been foreign excellent visual solutions enterprises occupy a large share. In this paper, a stable, reliable and efficient visual recognition and localization algorithm is studied, which successfully solves many engineering tasks. The following works are carried out: firstly, a form-based template matching algorithm is studied. Similarity measures are measured by dot product of gradient vector of template edge and gradient vector of object edge. By adopting greedy algorithm to improve the matching speed of the algorithm, and then reducing the image resolution through the image pyramid, the complexity of the algorithm is reduced. The matching speed of the algorithm is improved successfully by two speed lifting methods. And other template matching algorithms are studied, including the matching method based on the correlation number method and the template matching method based on the Hausdorf distance and Hoff transform with excellent performance. Secondly, an algorithm is proposed to automatically determine the minimum and highest threshold values of image edge amplitude segmentation, the number of layers of image pyramid and the translation step size and rotation step size of template search for different complex objects. It makes the matching algorithm more intelligent. In the realization of the matching process, the optimal filtering method for image pyramid building is determined through the contrast experiment, and the problem of the top pyramid optimization is solved. Visual recognition and location software is developed by using C programming language in vs 2013 development environment. Then, the performance of the algorithm is verified by designing experiments. It is divided into two kinds of experiments to test the performance of anti-jamming and the time of recognition respectively. Anti-jamming performance tests include anti-occlusion, chaos, and anti-nonlinear illumination variations. The algorithm is compared with the correlation number method, the three matching algorithms based on Hausdorf distance and Hoff transform. It is verified that the shape based template matching algorithm has excellent performance in dealing with the missing information of objects and the ability to resist light interference and processing time. Finally, the Delta robot visual sorting system is built, the calibration between camera and conveyor belt is completed, and the position calibration between robot and conveyor belt is completed to ensure the accuracy of the grabbing system. The dynamic target tracking algorithm based on image sequence is used to avoid multiple target recognition and capture. Through the self-developed visual processing algorithm, the identification and location of the midgut body of the ham sausage automatic sorting project has been successfully solved, and this project has been successfully applied in practical production, which has achieved a highly efficient sorting task and greatly improved the production efficiency.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 洪玲;;PatMax圖像匹配軟件在變速箱裝配中的應(yīng)用[J];智慧工廠;2016年10期
2 倪鶴鵬;劉亞男;張承瑞;王云飛;夏飛虎;邱正師;;基于機(jī)器視覺的Delta機(jī)器人分揀系統(tǒng)算法[J];機(jī)器人;2016年01期
3 呂鐵;韓娜;;智能制造:全球趨勢(shì)與中國(guó)戰(zhàn)略[J];人民論壇·學(xué)術(shù)前沿;2015年11期
4 王影;冷單;;我國(guó)智能制造裝備產(chǎn)業(yè)的現(xiàn)存問題及發(fā)展思路[J];經(jīng)濟(jì)縱橫;2015年01期
5 王田苗;陶永;;我國(guó)工業(yè)機(jī)器人技術(shù)現(xiàn)狀與產(chǎn)業(yè)化發(fā)展戰(zhàn)略[J];機(jī)械工程學(xué)報(bào);2014年09期
6 張國(guó)福;沈洪艷;;機(jī)器視覺技術(shù)在工業(yè)檢測(cè)中的應(yīng)用綜述[J];電子技術(shù)與軟件工程;2013年22期
7 Ju Huo;Wen-Bo Dong;Ning Yang;Wu-Kang Lin;;Calibration of Camera with Large Field-of-View Based on Flexible Planar Target[J];Journal of Harbin Institute of Technology;2013年04期
8 吳曉軍;鄒廣華;;基于邊緣幾何特征的高性能模板匹配算法[J];儀器儀表學(xué)報(bào);2013年07期
9 張紅霞;;國(guó)內(nèi)外工業(yè)機(jī)器人發(fā)展現(xiàn)狀與趨勢(shì)研究[J];電子世界;2013年12期
10 WANG Zuo;XIAO PengFeng;GU XingFa;FENG XueZhi;LI XiaoYing;GAO HaiLiang;LI Hui;LIN JinTang;ZHANG XueLiang;;Uncertainty analysis of cross-calibration for HJ-1 CCD camera[J];Science China(Technological Sciences);2013年03期
相關(guān)博士學(xué)位論文 前3條
1 張朝陽;基于視覺的機(jī)器人廢金屬分揀系統(tǒng)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2015年
2 張文昌;Delta高速并聯(lián)機(jī)器人視覺控制技術(shù)及視覺標(biāo)定技術(shù)研究[D];天津大學(xué);2012年
3 張青林;機(jī)器視覺高速圖像處理平臺(tái)中關(guān)鍵技術(shù)的研究[D];武漢大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 劉子龍;基于機(jī)器視覺的快速分揀食品包裝系統(tǒng)研究[D];浙江工業(yè)大學(xué);2015年
2 鄧明星;并聯(lián)Delta機(jī)器人的傳送帶動(dòng)態(tài)抓取系統(tǒng)設(shè)計(jì)[D];廣東工業(yè)大學(xué);2014年
3 崔芮;基于金字塔結(jié)構(gòu)的人臉識(shí)別算法研究[D];西安電子科技大學(xué);2014年
4 張俊凱;一種快速的旋轉(zhuǎn)模板匹配算法的設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2013年
5 曹京京;Hausdorff距離的計(jì)算原理及其在二維匹配中的應(yīng)用[D];大連理工大學(xué);2013年
6 唐濤;基于Hausdorff距離的相似性度量方法研究[D];廣西大學(xué);2012年
7 周麗莎;基于模板匹配的視覺定位技術(shù)研究與應(yīng)用[D];大連理工大學(xué);2012年
8 劉錦峰;圖像模板匹配快速算法研究[D];中南大學(xué);2007年
,本文編號(hào):2184701
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2184701.html