基于拍照的銀行卡卡號(hào)檢測(cè)
[Abstract]:With the wide use of imaging equipment, only one module needs to be embedded, and the mobile device can automatically input the bank card account without manual input by taking pictures of the bank card image. Therefore, the bank card number detection and recognition technology based on photograph has important research value. Like text detection in natural scenes, the bank card number detection based on taking pictures faces the same problem. The card number text also has the diversity of font, size, arrangement direction, and is also subject to illumination conditions. The influence of perspective transformation and contrast, in addition, the complex background of card number also increases the difficulty of card number detection and recognition. Based on the Chinese text detection of natural scene, this paper makes a systematic research on the bank card number detection based on taking pictures, and puts forward a method of card number detection based on feature extraction and machine learning. The main work of this paper is as follows: firstly, the algorithm is used to detect the horizontal card number line, and the horizontal correction of bank card image is needed. In this paper, two preprocessing algorithms are proposed to improve the proposed Radon transform skew correction algorithm. The first is to detect the edge of the input image, and the second is to detect the line segment of the input image. Then the edge or straight line image is transformed by Radon to detect the tilt angle of bank card. The experimental results show that the two preprocessing improvements can improve the skew correction effect of bank card image. Secondly, according to the transient color between the card number and its adjacent background, there is a certain contrast. In this paper, morphological algorithm is used to extract the contrast feature of the card number. Then, the horizontal projection and k-means are skillfully combined in this paper. A good candidate card number line location effect is obtained. Finally, in the process of card number verification, the traditional LBP algorithm is improved, and an improved LRBP (Region Local Binary Pattern) feature is proposed, which can describe the texture feature of the card number better and improve the detection effect of the bank card number line. Then, the HOG of sliding window and the improved LRBP feature are extracted respectively to verify the card number domain through the trained SVM classifier. In this process, the classifier integration is used to improve the detection accuracy of the classifier. Finally, through the experimental data set detection, the algorithm can detect the bank card number well.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張華平;;常用判別分析方法的綜合比較[J];統(tǒng)計(jì)與決策;2015年22期
2 姜維;盧朝陽(yáng);李靜;劉曉佩;姚超;;基于視覺顯著性和提升框架的場(chǎng)景文字背景抑制方法[J];電子與信息學(xué)報(bào);2014年03期
3 游佳;陳卉;;數(shù)字圖像中血管的分割與特征提取[J];生物醫(yī)學(xué)工程與臨床;2011年01期
4 袁海東;馬華東;黃曉冬;;基于梯度與粗糙度的視頻文本檢測(cè)與定位[J];電子學(xué)報(bào);2008年08期
5 賈曉丹;李文舉;王海姣;;一種新的基于Radon變換的車牌傾斜校正方法[J];計(jì)算機(jī)工程與應(yīng)用;2008年03期
6 潘梅森;郭國(guó)強(qiáng);;基于圖像矩的車牌號(hào)碼傾斜校正[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2007年08期
7 崔瑩瑩;楊杰;梁棟;;基于邊緣的標(biāo)志牌文本提取方法[J];影像技術(shù);2006年01期
8 包明,路小波;基于Hough變換的車牌傾斜檢測(cè)算法[J];交通與計(jì)算機(jī);2004年02期
9 王良紅,王錦玲,梁延華;改進(jìn)的Hough變換在校正汽車牌照傾斜中的應(yīng)用[J];信息與電子工程;2004年01期
10 梁勇,李天牧;多方位形態(tài)學(xué)結(jié)構(gòu)元素在圖像邊緣檢測(cè)中的應(yīng)用[J];云南大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年05期
相關(guān)會(huì)議論文 前1條
1 李鴻;彭宇新;肖建國(guó);;一種視頻字幕檢測(cè)和識(shí)別的方法[A];全國(guó)網(wǎng)絡(luò)與信息安全技術(shù)研討會(huì)論文集(下冊(cè))[C];2007年
相關(guān)碩士學(xué)位論文 前1條
1 張麗;基于小波的視頻中人工文本檢測(cè)方法研究[D];哈爾濱工程大學(xué);2007年
,本文編號(hào):2177734
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2177734.html