天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

基于RGB-D的室內(nèi)場景SLAM方法研究

發(fā)布時間:2018-08-08 14:34
【摘要】:近年來,隨著計算機(jī)技術(shù)的迅猛發(fā)展,同時定位與建圖(Simultaneous Localization and Mapping,SLAM)技術(shù)在移動機(jī)器人、無人機(jī)、無人駕駛、視覺醫(yī)療、AR/VR、可穿戴設(shè)備等方面得到了廣泛的應(yīng)用。隨著圖優(yōu)化問題中稀疏矩陣的發(fā)現(xiàn),基于視覺的SLAM方法已經(jīng)成為國內(nèi)外的研究熱點,基于圖優(yōu)化的SLAM方法逐漸應(yīng)用于在大規(guī)模場景中。本文采用華碩Xtion Pro Live深度相機(jī)作為傳感器,提出了一種基于改進(jìn)BoVW模型的三維SLAM方法,在本文提出的SLAM方法中,在圖像檢測和閉環(huán)檢測算法上提出了改進(jìn),并通過實驗證明提高SLAM的效率和魯棒性。首先,介紹了基于視覺SLAM的基本原理和方法。對SLAM問題進(jìn)行了描述,分析了幾種經(jīng)典的SLAM方法,對比了幾種經(jīng)典的特征檢測的優(yōu)缺點,針對視覺SLAM對圖像特征提取的要求,在ORB特征提取算法上提出了一種基于自適應(yīng)的區(qū)域分割ORB特征提取方法。并在圖像特征匹配方法上,采用傳統(tǒng)的隨機(jī)采樣一致性(Random Sample Consensus,RANSAC)算法和K近鄰(K-Nearest Neighbor algorithm,KNN)算法消除誤匹配,有效地減少誤匹配點數(shù),提高了匹配的精度和速度。在點云數(shù)據(jù)融合算法上,采用迭代最近(Iterative Closet Point,ICP)算法,用奇異分解(SVD)方法進(jìn)行求解計算相機(jī)位姿。其次,在閉環(huán)檢測方法上,介紹了閉環(huán)檢測的作用和方法,及閉環(huán)檢測中的問題和難點,在基于BoVW模型的閉環(huán)檢測方法中,介紹了視覺詞典的創(chuàng)建方法,相對于傳統(tǒng)K-Means聚類算法的缺點,提出了一種改進(jìn)的K-Means算法,有效地解決了K-Means算法依賴初始聚類中心,容易陷入局部最優(yōu)的問題,提高了閉環(huán)檢測的準(zhǔn)確率。最后,設(shè)計了一種基于RGB-D的室內(nèi)場景SLAM系統(tǒng),并通過實驗把本文改進(jìn)的算法應(yīng)用于該SLAM方法中。
[Abstract]:In recent years, with the rapid development of computer technology, simultaneous location and mapping (Simultaneous Localization and mapping slam) technology has been widely used in mobile robots, unmanned aerial vehicles, visual medical AR-VR, wearable devices and so on. With the discovery of sparse matrix in graph optimization problem, SLAM method based on vision has become a hot topic at home and abroad, and SLAM method based on graph optimization is gradually applied in large-scale scene. In this paper, using Asus Xtion Pro Live depth camera as sensor, a 3D SLAM method based on improved BoVW model is proposed. In the proposed SLAM method, the image detection and close-loop detection algorithms are improved. The experimental results show that the efficiency and robustness of SLAM are improved. Firstly, the basic principle and method of visual SLAM are introduced. This paper describes the SLAM problem, analyzes several classical SLAM methods, compares the advantages and disadvantages of several classical feature detection methods, and aims at the requirements of visual SLAM for image feature extraction. An adaptive region segmentation ORB feature extraction method based on ORB feature extraction algorithm is proposed. In the image feature matching method, the traditional random sampling consistent (Random Sample ConsensusRANSAC algorithm and the K-Nearest Neighbor algorithm KNN algorithm are used to eliminate the mismatch, which can effectively reduce the number of mismatch points and improve the accuracy and speed of the matching. In the point cloud data fusion algorithm, the iterative nearest (Iterative Closet Point ICP algorithm and singular decomposition (SVD) method are used to calculate the camera pose. Secondly, the function and method of closed-loop detection are introduced, and the problems and difficulties in closed-loop detection are introduced. In the close-loop detection method based on BoVW model, the method of creating visual dictionary is introduced. Compared with the traditional K-Means clustering algorithm, an improved K-Means algorithm is proposed, which effectively solves the problem that the K-Means algorithm depends on the initial clustering center and is prone to fall into the local optimal condition, and improves the accuracy of closed-loop detection. Finally, an indoor scene SLAM system based on RGB-D is designed, and the improved algorithm is applied to the SLAM method through experiments.
【學(xué)位授予單位】:湖南工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 王忠立;趙杰;蔡鶴皋;;大規(guī)模環(huán)境下基于圖優(yōu)化SLAM的后端優(yōu)化方法[J];哈爾濱工業(yè)大學(xué)學(xué)報;2015年07期

2 陳白帆;蔡自興;鄒智榮;;一種移動機(jī)器人SLAM中的多假設(shè)數(shù)據(jù)關(guān)聯(lián)方法[J];中南大學(xué)學(xué)報(自然科學(xué)版);2012年02期

3 朱代先;王曉華;;基于改進(jìn)SIFT算法的雙目視覺SLAM研究[J];計算機(jī)工程與應(yīng)用;2011年14期

4 溫豐;柴曉杰;朱智平;董小明;鄒偉;原魁;;基于單目視覺的SLAM算法研究[J];系統(tǒng)科學(xué)與數(shù)學(xué);2010年06期

5 陳偉;吳濤;李政;賀漢根;;基于粒子濾波的單目視覺SLAM算法[J];機(jī)器人;2008年03期

相關(guān)碩士學(xué)位論文 前3條

1 鄭順凱;自然環(huán)境中基于圖優(yōu)化的單目視覺SLAM的研究[D];北京交通大學(xué);2016年

2 劉芳;動態(tài)未知環(huán)境下移動機(jī)器人同時定位與地圖創(chuàng)建[D];哈爾濱工業(yè)大學(xué);2015年

3 陳超;基于TOF攝相機(jī)的三維點云地圖構(gòu)建研究[D];哈爾濱工業(yè)大學(xué);2013年

,

本文編號:2172093

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2172093.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶442dc***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日韩欧美亚洲综合在线| 精品视频一区二区不卡| 亚洲国产av国产av| 国产成人精品国产亚洲欧洲| 国产高清一区二区白浆| 日本人妻熟女一区二区三区| 天堂网中文字幕在线视频| 神马午夜福利免费视频| 一级欧美一级欧美在线播| 国产精品丝袜美腿一区二区| 太香蕉久久国产精品视频| 色婷婷亚洲精品综合网| 老司机精品一区二区三区| 在线免费视频你懂的观看| 国产精品午夜福利在线观看| 国产精品美女午夜福利| 中日韩免费一区二区三区| 91一区国产中文字幕| 亚洲综合天堂一二三区| 国产免费一区二区不卡| 又大又长又粗又猛国产精品| 国产高清视频一区不卡| 亚洲综合色婷婷七月丁香| 亚洲人午夜精品射精日韩| 日韩精品一区二区三区含羞含羞草| 亚洲精品中文字幕熟女| 欧美国产在线观看精品| 国产原创激情一区二区三区| 欧美日韩一级黄片免费观看| 久久热在线视频免费观看| 熟女少妇久久一区二区三区| 欧美日韩综合免费视频| 国产精品一区二区视频| 国产丝袜极品黑色高跟鞋| 成人精品亚洲欧美日韩| 精品国产品国语在线不卡| 中文字幕一区久久综合| 国产一级精品色特级色国产| 国产精品一区二区视频成人 | 亚洲国产成人一区二区在线观看 | 国内外激情免费在线视频|