基于稀疏表示和字典學(xué)習(xí)的低劑量CT圖像恢復(fù)研究
[Abstract]:With the development of computer technology, CT imaging technology has been widely used in the diagnosis and treatment of clinical diseases, and has become the first choice for the diagnosis of brain diseases. However, the amount of X-ray dose used in CT scan also increases, which increases the probability of inducing disease, while low dose CT can reduce the probability of inducing disease. However, low dose leads to the deterioration of image quality, so it is of great significance to study the restoration of low dose CT images. Since sparse representation and dictionary learning are used to solve signal problems such as image denoising and restoring due to their excellent characteristics, it is of great significance and research value to apply this method to low-dose CT image problems. In order to solve the problem of brain low-dose CT image degradation, the following work has been done in this paper: firstly, low-dose CT image restoration is studied from sparse representation based on dictionary learning (MODK-SVDU OLMM-FDL-PG). The results show that the FDL-PG algorithm is better than other algorithms in visual perception and objectivity, and has good adaptability and fast convergence speed, but there are still some problems such as noise and lack of some information. Then, two improved low dose CT image restoration methods based on sparse representation and dictionary learning are proposed. One method is to perform principal component analysis (PCA),) on low dose phantom and clinical brain CT images, then to do dictionary training (FDL-PG) and denoising with dimensionally reduced data. This method (FDL-PG-PCA) improves the denoising performance, but there are still a few details lost. Another method is to process low dose phantom and clinical CT images with BM3D filter, then use filtered data for dictionary training (FDL-PG) and denoising. This method (FDL-PG-BM3D) maintains good detail information. The experimental results of phantom and CT images show that these two methods have high denoising performance and further suppress the noise. These two methods are expected to ensure the accuracy of the diagnosis and reduce the dose of X-ray radiation to the patients.
【學(xué)位授予單位】:東華理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 谷宇;呂曉琪;楊立東;趙建峰;喻大華;任國印;李剛;趙瑛;;基于CT影像的肺結(jié)節(jié)計算機輔助檢測技術(shù)進展[J];重慶醫(yī)學(xué);2017年06期
2 李彬;;肺部低劑量螺旋CT放射劑量的研究[J];臨床醫(yī)藥文獻電子雜志;2016年01期
3 張超波;曾怡群;盧偉光;賴煥泉;;低劑量CT灌注成像在腦梗死患者恢復(fù)期的應(yīng)用[J];實用醫(yī)學(xué)雜志;2015年13期
4 李騫昊;;低劑量胸部CT技術(shù)在臨床中的應(yīng)用[J];中國現(xiàn)代藥物應(yīng)用;2015年12期
5 顧建華;卓維海;;降低兒童X射線CT檢查輻射劑量的研究進展[J];中國醫(yī)學(xué)物理學(xué)雜志;2014年05期
6 孔祥云;李尹岑;;CT技術(shù)的發(fā)展與其在醫(yī)學(xué)上的應(yīng)用[J];影像技術(shù);2014年03期
7 馮曉源;;影像醫(yī)學(xué)的發(fā)展與思考[J];中國信息界(e醫(yī)療);2013年01期
8 朱永成;陳陽;羅立民;Toumoulin Christine;;基于字典學(xué)習(xí)的低劑量X-ray CT圖像去噪[J];東南大學(xué)學(xué)報(自然科學(xué)版);2012年05期
9 胡良梅 ,高雋 ,何柯峰;圖像融合質(zhì)量評價方法的研究[J];電子學(xué)報;2004年S1期
10 董碧蓉,何萍;從循證醫(yī)學(xué)角度談早期肺癌的篩查[J];中國循證醫(yī)學(xué)雜志;2004年06期
相關(guān)博士學(xué)位論文 前4條
1 張俊峰;稀疏準(zhǔn)則下的圖像復(fù)原與重建方法研究[D];東南大學(xué);2016年
2 張權(quán);低劑量X線CT重建若干問題研究[D];東南大學(xué);2015年
3 韓芳芳;基于CT圖像多維特征的肺結(jié)節(jié)檢測和診斷方法研究[D];東北大學(xué);2015年
4 李s,
本文編號:2167839
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2167839.html