基于深度學(xué)習(xí)的情感詞向量生成模型研究
[Abstract]:As a carrier of information, the Internet connects the whole world and enables people to access and share information anytime and anywhere. Based on the Weibo text, this paper exploits the emotional expression of Weibo from a new perspective-emotion word vector based on deep learning. The affective word vector is the by-product of the deep learning model after completing the task of affective analysis and complements with the accuracy of emotion classification. Good input of affective word vector is the basis of high efficiency of affective classification. At the same time, it has good effect of supervised classification and feedback to generate high quality affective word vector. Firstly, a convolution neural network (HV_CNN) based on the combination of transverse convolution and longitudinal convolution is proposed. It combines the advantages of dynamic convolution neural network (DCNN) to automatically extract different length features according to different sample lengths. And convolutional neural network (CNN) word vector between different dimensions and the advantages of fast speed. Word vector and word vector are used as network input, and the effects of emotion classification of different models are tested. Secondly, from the perspective of linguistics, four similarity algorithms are used to calculate the affective polarity relationship between similar words, and to improve the emotional classification effect of existing models to determine the quality of emotional word vectors generated by different models. Thirdly, two applications of affective word vector are proposed. One is to apply the efficient shallow machine learning model to Weibo affective classification to avoid complex syntactic analysis and feature extraction. The second is to judge the emotional polarity of unknown polarity words according to the distribution of words in affective semantic space. By using the Weibo corpus and the mobile phone review corpus respectively, the results show that the HV_CNN model has high quality of emotion word vector and the effect of emotion classification of the model itself is outstanding.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.1;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋施恩;樊興華;;基于詞共現(xiàn)和詞上下文的領(lǐng)域觀點(diǎn)詞抽取方法[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年11期
2 魏晶晶;吳曉吟;;電子商務(wù)產(chǎn)品評論多級(jí)情感分析的研究與實(shí)現(xiàn)[J];軟件;2013年09期
3 楊立公;朱儉;湯世平;;文本情感分析綜述[J];計(jì)算機(jī)應(yīng)用;2013年06期
4 黃碩;周延泉;;基于知網(wǎng)和同義詞詞林的詞匯語義傾向計(jì)算[J];軟件;2013年02期
5 林政;譚松波;程學(xué)旗;;基于情感關(guān)鍵句抽取的情感分類研究[J];計(jì)算機(jī)研究與發(fā)展;2012年11期
6 孫志軍;薛磊;許陽明;王正;;深度學(xué)習(xí)研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2012年08期
7 魏椺;向陽;陳千;;中文文本情感分析綜述[J];計(jì)算機(jī)應(yīng)用;2011年12期
8 喬向杰;王志良;王萬森;;基于OCC模型的E-learning系統(tǒng)情感建模[J];計(jì)算機(jī)科學(xué);2010年05期
9 王根;趙軍;;基于多重冗余標(biāo)記CRFs的句子情感分析研究[J];中文信息學(xué)報(bào);2007年05期
10 朱嫣嵐;閔錦;周雅倩;黃萱菁;吳立德;;基于HowNet的詞匯語義傾向計(jì)算[J];中文信息學(xué)報(bào);2006年01期
相關(guān)碩士學(xué)位論文 前2條
1 宋靜靜;中文短文本情感傾向性分析研究[D];重慶理工大學(xué);2013年
2 蔣超;基于用戶聚類和語義詞典的微博推薦系統(tǒng)[D];浙江大學(xué);2013年
,本文編號(hào):2166098
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2166098.html