基于位置社交網(wǎng)絡(luò)的個性化推薦方法的研究
[Abstract]:With the further development of Internet technology, social networks are becoming more and more popular in people's lives. People use mobile social networks to find useful life information, share life experiences, and interact with friends. And with Android, Apple and other smart mobile devices around 2010, the popularity of applications. Based on the existing social network, a new concept of social network, Location-based Social Network (LBSN), is formed by combining the relevant information of the user's geographical location. The location-based social network not only pays attention to the information published on the user line and the friends relationship on the user line, but also preserves the activity data and the activity pattern below the user line to understand the daily behavior of the user. Because LBSN contains a large number of types of data. We can mine the data and find meaningful information. At present, the research on personalized recommendation based on LBSN data is very hot. Using LBSN data to recommend users is mainly focused on the following three areas: (1) Point of interest recommendation: this recommendation is for users, including two types of recommendations, one is the destination point, The other is the route recommendation of multiple locations; (2) business location recommendation: this recommendation is mainly for merchants; (3) friend recommendation: online friend recommendation to users. Although scholars have made a great breakthrough in the research of LBSN recommendation system, there are still some problems as follows: (1) the number of interest points and users is large, the amount of computation is large, the data is sparse; (2) the expression method of user relationship is too simple. (3) the cold start problem of the new user (4) not combining the temporal and spatial context information. In view of the above problems, this paper puts forward some new ideas and solutions (1). By dividing urban cells, reducing the size of problem analysis, and solving the problem of partial data sparse; (2) enriching the representation of friends, more in line with the real world. In the general LBSN data, the friend relationship is only 01 (whether there is or not), and obviously does not take into account the intimate density of the friend relationship, this paper will combine the on-line and offline data to quantify the friend relationship. Therefore, it plays a more important role in recommendation system. (3) aiming at the problem of context information, this paper proposes to combine space-time information with user space-time features. Analyze the temporal and spatial characteristics of users and interest points and the current spatiotemporal information to make better recommendations. In addition, this paper proposes a new business location problem and a friend recommendation model based on random walk between users and points of interest. In the experiment, we choose the famous foreign LBSN data set Foursquare for analysis and experiment, and compare the methods and previous research results with some evaluation criteria such as accuracy, recall rate and so on. A series of tests on the algorithm of this paper can realize the effective recommendation to users and POI suppliers.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3
【相似文獻】
相關(guān)期刊論文 前10條
1 Bruce Antelman;李雯;;社交網(wǎng)絡(luò)[J];高校圖書館工作;2008年01期
2 ;基于位置的手機社交網(wǎng)絡(luò)“貝多”正式發(fā)布[J];中國新通信;2008年06期
3 曹增輝;;社交網(wǎng)絡(luò)更偏向于用戶工具[J];信息網(wǎng)絡(luò);2009年11期
4 ;美國:印刷企業(yè)青睞社交網(wǎng)絡(luò)營銷新方式[J];中國包裝工業(yè);2010年Z1期
5 李智惠;柳承燁;;韓國移動社交網(wǎng)絡(luò)服務(wù)的類型分析與促進方案[J];現(xiàn)代傳播(中國傳媒大學(xué)學(xué)報);2010年08期
6 賈富;;改變一切的社交網(wǎng)絡(luò)[J];互聯(lián)網(wǎng)天地;2011年04期
7 譚拯;;社交網(wǎng)絡(luò):連接與發(fā)現(xiàn)[J];廣東通信技術(shù);2011年07期
8 陳一舟;;社交網(wǎng)絡(luò)的發(fā)展趨勢[J];傳媒;2011年12期
9 殷樂;;全球社交網(wǎng)絡(luò)新態(tài)勢及文化影響[J];新聞與寫作;2012年01期
10 許麗;;社交網(wǎng)絡(luò):孤獨年代的集體狂歡[J];上海信息化;2012年09期
相關(guān)會議論文 前10條
1 趙云龍;李艷兵;;社交網(wǎng)絡(luò)用戶的人格預(yù)測與關(guān)系強度研究[A];第七屆(2012)中國管理學(xué)年會商務(wù)智能分會場論文集(選編)[C];2012年
2 宮廣宇;李開軍;;對社交網(wǎng)絡(luò)中信息傳播的分析和思考——以人人網(wǎng)為例[A];首屆華中地區(qū)新聞與傳播學(xué)科研究生學(xué)術(shù)論壇獲獎?wù)撐腫C];2010年
3 楊子鵬;喬麗娟;王夢思;楊雪迎;孟子冰;張禹;;社交網(wǎng)絡(luò)與大學(xué)生焦慮緩解[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國心理學(xué)學(xué)術(shù)會議論文集[C];2013年
4 畢雪梅;;體育虛擬社區(qū)中的體育社交網(wǎng)絡(luò)解析[A];第九屆全國體育科學(xué)大會論文摘要匯編(4)[C];2011年
5 杜p,
本文編號:2161698
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2161698.html