基于KRTS的實時視覺處理系統(tǒng)與模板匹配算法研究
[Abstract]:With the rising labor cost, and with the advance of industry 4.0 and the strategy of 2025 made in China, with intelligent manufacturing as the core, Domestic manufacturing enterprises are actively developing or purchasing corresponding automation equipment to automate existing production lines in order to improve production efficiency, reduce labor costs and solve the growing shortage of manufacturing labor. Machine vision is the eye of automation equipment, through machine vision can further improve the level of automation, so machine vision has been more and more widely used in the automation industry in recent years, machine vision has a bright future. But at the same time, more and more requirements for real-time image processing are put forward. Based on the analysis of the present situation and development trend of machine vision and its control system at home and abroad, A real time vision processing system is constructed with KRTS, a real time extension suite of Windows operating system developed by Kithara Company of Germany. The real time performance of this vision processing system is verified by experiments. After comparing the advantages and disadvantages of common communication methods such as serial port USB and Ethernet, this paper finally chooses Ethernet communication with excellent comprehensive performance. The Ethernet communication between the visual processing system and the motion control system is realized by using the API function provided by Socket to implement the TCP/IP protocol. On the basis of fully understanding the internal running mechanism of TCP/IP protocol implemented by Socket and the distribution of all variables, arrays, structures and so on in the computer memory in the project, In this paper, it is proposed that the data needed to be transmitted between the visual processing system and the motion control system can be classified according to function and encapsulated into one structure, and together with the other variables that need to be transmitted, it is constructed in a large structure with socket and straight again. Then the structure object is used to realize the data transmission between the visual processing system and the motion control system. The process of data serialization and deserialization is eliminated, which not only improves the efficiency of data communication, but also simplifies the data transfer protocol. In this paper, the traditional template matching algorithm based on circular projection is improved, by extracting the ROI image of the workpiece to remove the interference of the outside pixels of the workpiece to the identification of the workpiece, and by modifying the principle of making the circular template to improve the utilization rate of the workpiece information. Particle swarm optimization (PSO) is used to improve the rotation speed of the workpiece, and the ROI image of the overlapped workpiece is extracted by using the matching information of the external contour of the workpiece to be tested and the template workpiece. The compensation mechanism of ROI image is provided for the workpiece which is not fully in view, so as to identify the parts, and make the matching result of template more reliable. Finally, this paper implements and verifies the template matching algorithm with OpenCV function, and transplants it to the real-time visual processing system constructed in this paper.
【學位授予單位】:山東大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【相似文獻】
相關期刊論文 前10條
1 陳瑞紅;對用來顯示眼睛圖像的三個模板匹配算法的評估[J];國外醫(yī)學.生物醫(yī)學工程分冊;1993年05期
2 馬云龍,夏炯賢,吳永明;基于模板匹配算法高速運動分析系統(tǒng)設計與實現(xiàn)[J];計算機應用與軟件;2004年07期
3 余立功,王強,陳純;多尺度模板匹配算法[J];工程圖學學報;2005年03期
4 李弟平;羅三定;;一種基于幾何特征的改進模板匹配算法[J];電腦知識與技術;2006年17期
5 劉彩霞;;數(shù)據(jù)與模板匹配算法研究[J];懷化學院學報;2008年11期
6 侯夢華;呂文閣;梁亮;;基于競選算法的模板匹配算法[J];機電工程技術;2008年04期
7 欒柱曉;唐t;鄭群英;;一種改進的人眼模板匹配算法[J];計算機系統(tǒng)應用;2009年12期
8 唐t;李青;;一種快速的模板匹配算法[J];計算機應用;2010年06期
9 楊勇兵;何緒昊;戚其豐;胡躍明;;一種新型的快速模板匹配算法[J];電子工藝技術;2010年03期
10 謝方方;楊文飛;陳靜;李芳;于越;;模板匹配算法的兩種實現(xiàn)方法比較[J];信息技術;2012年10期
相關會議論文 前2條
1 余立功;王強;陳純;;多尺度模板匹配算法研究[A];全國第16屆計算機科學與技術應用(CACIS)學術會議論文集[C];2004年
2 宋仁庭;楊衛(wèi)平;楊明月;;模板匹配算法對運動目標自動鎖定跟蹤的研究[A];2007年光電探測與制導技術的發(fā)展與應用研討會論文集[C];2007年
相關博士學位論文 前2條
1 董晶;模板圖像快速可靠匹配技術研究[D];國防科學技術大學;2015年
2 陳洋;面向植物電生理多源數(shù)據(jù)的在線分析方法研究[D];中國農(nóng)業(yè)大學;2016年
相關碩士學位論文 前10條
1 陳秋強;基于機器視覺定位的表殼鑲鉆機控制系統(tǒng)研究與開發(fā)[D];華南理工大學;2015年
2 唐紅強;基于GRM模板匹配算法的車型和車系識別[D];電子科技大學;2014年
3 卓林超;面向物流的亂序數(shù)據(jù)處理方法研究[D];南京郵電大學;2015年
4 楊誠;LED晶圓片的快速模板匹配算法研究[D];哈爾濱工業(yè)大學;2016年
5 梅亞敏;融合先驗知識的場景文本識別應用研究[D];電子科技大學;2016年
6 邱正師;基于KRTS的實時視覺處理系統(tǒng)與模板匹配算法研究[D];山東大學;2017年
7 鄒廣華;基于幾何特征的快速模板匹配算法[D];哈爾濱工業(yè)大學;2010年
8 張建華;基于灰度的模板匹配算法研究[D];內(nèi)蒙古農(nóng)業(yè)大學;2013年
9 張俊凱;一種快速的旋轉(zhuǎn)模板匹配算法的設計與實現(xiàn)[D];哈爾濱工業(yè)大學;2013年
10 胡t焧,
本文編號:2160403
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2160403.html