基于GPU的數(shù)字全息自動聚焦技術(shù)研究
[Abstract]:Digital holography has many advantages, such as fast, contactless, full-field, three-dimensional real-time measurement and so on. It is widely used in micro-device detection, particle field analysis, biological microscopic observation, optical device detection and so on. Although digital holography can reproduce the object to be measured by computer, in order to obtain the best image quality, the best reconstruction distance must be obtained by autofocus technique. For digital holographic auto-focusing, two indexes should be considered: one is whether the best reappearance distance can be found accurately, and the other is whether the focus can be completed quickly. On the basis of studying the recording and reproducing of holograms, focusing evaluation function and focusing search algorithm, a focus evaluation function based on db4 wavelet basis is improved. At the same time, the best reappearance distance is judged accurately, and the strong noise resistance is obtained, and then the optimization and acceleration of the autofocus algorithm is realized by using the high performance parallel and fast computing characteristics of GPU. The main contents of this paper are as follows: firstly, on the basis of analyzing the principle of digital hologram recording and reproducing, the comparison and analysis of two kinds of digital holographic recording structures and three reproducing algorithms are made. The structure and algorithm of off-axis holographic optical path structure and Fresnel transform method are determined, and the commonly used grayscale variance method and gradient leveling method are described in detail. Secondly, on the basis of analyzing the two key technologies of focusing evaluation function and focusing search algorithm, the advantages of wavelet transform in image time-frequency localization analysis are analyzed. A focus evaluation function based on wavelet transform is proposed, and compared with other traditional focus evaluation functions, its performance is proved to be superior, and the best reconstruction distance of hologram can be found accurately. On the basis of three common search algorithms, the traversal search method, Fibonacci search method and the "blind" mountain climbing search method, the advantages and disadvantages of these algorithms are analyzed, and the applicable range is given. Finally, the autofocus algorithm is transplanted to GPU, and the algorithm is accelerated by the powerful parallel computing power of GPU. Compared with running on CPU, the speed of autofocus algorithm is increased by more than 10 times, and the goal of fast focusing is achieved. A digital holographic auto-focusing application software is developed based on the autofocus program prototype of GPU. The software interface is easy to understand and easy to use.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;O438.1
【參考文獻】
相關(guān)期刊論文 前10條
1 閆鈞華;杭誼青;許俊峰;儲林臻;;基于CUDA的高分辨率數(shù)字視頻圖像配準快速實現(xiàn)[J];儀器儀表學(xué)報;2014年02期
2 蔡勇;李光耀;王琥;;基于CUDA的并行粒子群優(yōu)化算法的設(shè)計與實現(xiàn)[J];計算機應(yīng)用研究;2013年08期
3 吳春生;馮才剛;遲學(xué)斌;;GPU指紋計算程序簡述及性能分析[J];科研信息化技術(shù)與應(yīng)用;2012年04期
4 許雪貴;張清;;基于CUDA的高效并行遙感影像處理[J];地理空間信息;2011年06期
5 周侃;閻文麗;甘斌;郝佳新;;基于GPU的小波變換[J];計算機仿真;2010年08期
6 劉向遠;梅忠義;張穗萌;;“0.618”法、Fibonacci法、拋物線法搜尋復(fù)擺周期極值點[J];物理實驗;2010年03期
7 甘新標;沈立;王志英;;基于CUDA的并行全搜索運動估計算法[J];計算機輔助設(shè)計與圖形學(xué)學(xué)報;2010年03期
8 劉長庚;王大勇;張亦卓;趙潔;萬玉紅;江竹青;;數(shù)字全息成像中基于導(dǎo)數(shù)的自動對焦算法[J];中國激光;2009年11期
9 杜勇;蔣征;;基于小波分解的動態(tài)變形預(yù)報[J];地理空間信息;2009年02期
10 馮忠耀;賈f ;周景會;忽滿利;;數(shù)字全息中利用圖像拼接測量大物體的三維形貌[J];中國激光;2008年12期
相關(guān)博士學(xué)位論文 前4條
1 閔俊偉;相移數(shù)字全息顯微的理論與實驗研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機械研究所);2013年
2 王健;基于圖像處理的自動調(diào)焦技術(shù)研究[D];中國科學(xué)院研究生院(光電技術(shù)研究所);2013年
3 張亦卓;生物樣品的數(shù)字全息顯微相襯成像技術(shù)研究[D];北京工業(yè)大學(xué);2012年
4 陳國金;數(shù)字圖像自動聚焦技術(shù)研究及系統(tǒng)實現(xiàn)[D];西安電子科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 郭志鵬;腫瘤基因表達譜的數(shù)據(jù)挖掘與識別分類[D];北京理工大學(xué);2015年
2 張廣;高清網(wǎng)絡(luò)攝像機的自動聚焦技術(shù)研究[D];鄭州大學(xué);2014年
3 趙馨怡;基于CUDA的圖像濾波技術(shù)研究[D];西北師范大學(xué);2014年
4 張暉;遙感圖像區(qū)域變化檢測技術(shù)的研究[D];北京交通大學(xué);2014年
5 常恒;基于動態(tài)拉力和傾角的輸電線路覆冰預(yù)測與試驗研究[D];重慶大學(xué);2013年
6 馬書曉;基于提升小波變換的自動聚焦算法研究[D];山東大學(xué);2013年
7 唐曉迪;基于半色調(diào)圖像印刷水印的穩(wěn)健性和脆弱性研究[D];吉林大學(xué);2011年
8 楊丹丹;圖像壓縮中小波變換的GPU高速優(yōu)化方法研究[D];西安電子科技大學(xué);2011年
9 殷玉娟;微結(jié)構(gòu)表面形貌測量的數(shù)字全息顯微方法的研究[D];天津大學(xué);2010年
10 張巖;基于小波變換的圖像壓縮編碼研究[D];青島科技大學(xué);2009年
,本文編號:2159210
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2159210.html