不依賴于精確初始坐標(biāo)的車聯(lián)網(wǎng)相對(duì)定位坐標(biāo)估計(jì)算法
[Abstract]:Long time poor or even interrupted (Global Positioning System) signals in networked vehicle positioning may lead to unreliable or even unusable GPS positioning results, which can not provide reliable initial coordinates for relative positioning algorithms. In order to solve this problem, this paper studies the method of vehicle relative position coordinate estimation. Combining with TOA (Time of Arrival) ranging technology, the problem of relative position coordinate estimation is transformed into a nonlinear programming problem. In order to reduce the influence of initial coordinates on the results of nonlinear programming problems, the external penalty function method is combined with the Powell algorithm to optimize the optimization method using the characteristic that the external penalty function method "can approach the feasible region step by step from the infeasible solution". The sensitivity of the algorithm to the initial coordinates is solved, and the Powell algorithm is used to solve the optimal solution of the objective function by making use of the characteristic that the local optimal solution can be approximated by the Powell algorithm. An algorithm of relative positioning (Exact Initial Coordinate Free Relative localization EICFRL, which does not depend on the exact initial coordinates, is proposed to realize the high precision relative positioning in the vehicle network. In the algorithm verification, two kinds of TOA node deployment schemes are adopted, one is single-point deployment scheme and the other is multi-point deployment scheme based on geometric constraints. In the multi-point deployment scheme, the inherent shape attributes of the vehicle are used to form the geometric constraints based on the vehicle model, which increases the limitation of the feasible region of the nonlinear programming problem. In order to verify the feasibility and effectiveness of the proposed algorithm, different ranging errors, connectivity and vehicle number are set up in the simulation experiment. The results of the algorithm are compared with that of the Powell algorithm, LM (Levenberg-Marquard) algorithm (Cramer-Rao Lower Bound). The experimental results show that the accuracy of the algorithm is improved by more than 50%. When the multi-point deployment scheme is used, the location error of the algorithm is further reduced to about 30% (simulation environment) and 23% (measured environment).
【作者單位】: 北京科技大學(xué)計(jì)算機(jī)與通信工程學(xué)院;北京科技大學(xué)融合網(wǎng)絡(luò)與泛在業(yè)務(wù)工程技術(shù)研究中心;
【基金】:國(guó)家自然科學(xué)基金(61304257) 北京市自然科學(xué)基金(4152036) 中央高;究蒲袠I(yè)務(wù)費(fèi)(FRF-TP-15-026A2)資助 北京科技大學(xué)與臺(tái)北科技大學(xué)學(xué)術(shù)合作專題研究計(jì)劃經(jīng)費(fèi)輔助~~
【分類號(hào)】:U495
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 劉云浩;楊錚;王小平;簡(jiǎn)麗榮;;Location,Localization,and Localizability[J];Journal of Computer Science & Technology;2010年02期
【二級(jí)參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 蔡娜娜;陳月輝;李偉;;基于神經(jīng)網(wǎng)絡(luò)的蛋白質(zhì)三級(jí)結(jié)構(gòu)預(yù)測(cè)[J];計(jì)算機(jī)工程;2010年09期
2 王西鋒;高嶺;張曉孿;;基于小波技術(shù)的網(wǎng)絡(luò)流量分析和預(yù)測(cè)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年08期
3 白翔宇;葉新銘;蔣海;;基于小波變換與自回歸模型的網(wǎng)絡(luò)流量預(yù)測(cè)[J];計(jì)算機(jī)科學(xué);2007年07期
4 雷霆;余鎮(zhèn)危;;一種網(wǎng)絡(luò)流量預(yù)測(cè)的小波神經(jīng)網(wǎng)絡(luò)模型[J];計(jì)算機(jī)應(yīng)用;2006年03期
5 鄒柏賢,劉強(qiáng);基于ARMA模型的網(wǎng)絡(luò)流量預(yù)測(cè)[J];計(jì)算機(jī)研究與發(fā)展;2002年12期
6 舒炎泰,王雷,張連芳,薛飛,金志剛,OliverYang;基于FARIMA模型的Internet網(wǎng)絡(luò)業(yè)務(wù)預(yù)報(bào)[J];計(jì)算機(jī)學(xué)報(bào);2001年01期
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李志軍;劉洋;陳曾平;;前視紅外地面固定目標(biāo)末制導(dǎo)相對(duì)定位技術(shù)[J];紅外與激光工程;2012年11期
2 龔曉;;天線高對(duì)GPS相對(duì)定位的影響[J];企業(yè)技術(shù)開(kāi)發(fā);2006年11期
3 羅暉;;單張相片的空間后方交會(huì)在兩部固定相機(jī)相對(duì)定位中的應(yīng)用[J];硅谷;2008年24期
4 葛茂榮,,過(guò)靜s,张試
本文編號(hào):2159175
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2159175.html