高鐵接觸網(wǎng)旋轉(zhuǎn)雙耳銷釘狀態(tài)檢測(cè)方法研究
發(fā)布時(shí)間:2018-08-01 17:24
【摘要】:針對(duì)高速鐵路接觸網(wǎng)支撐裝置旋轉(zhuǎn)雙耳部件銷釘?shù)乃擅撆c脫落問(wèn)題,提出一種基于圖像不變性目標(biāo)定位及灰度分布規(guī)律特征的銷釘不良狀態(tài)檢測(cè)方法。通過(guò)分析現(xiàn)場(chǎng)接觸網(wǎng)支撐及懸掛裝置圖像,利用SIFT(Scale Invariant Feature transform)算法和改進(jìn)的RANSAC(Random Sample Consensus)算法實(shí)現(xiàn)雙耳部件的定位;采用Hough變換實(shí)現(xiàn)目標(biāo)圖像中雙耳套筒傾角的提取,并將其旋轉(zhuǎn)至水平方向,進(jìn)而實(shí)現(xiàn)旋轉(zhuǎn)雙耳部分的分割;累加目標(biāo)圖像的豎直方向像素灰度值,確定銷釘受力部分和兩端非受力部分長(zhǎng)度;歸納銷釘正常工作及故障時(shí)這些長(zhǎng)度間相關(guān)比值的范圍,從而判斷銷釘?shù)墓ぷ鳡顟B(tài)。實(shí)驗(yàn)表明,該方法能夠較準(zhǔn)確地實(shí)現(xiàn)銷釘不良狀態(tài)的檢測(cè)。
[Abstract]:In order to solve the problem of loosening and shedding of pin of rotary binaural parts in catenary support device of high-speed railway, a new method for detecting the bad state of pin based on image invariance target location and gray distribution rule is proposed. By analyzing the images of field catenary support and suspension device, the location of binaural parts is realized by using SIFT (Scale Invariant Feature transform) algorithm and improved RANSAC (Random Sample Consensus) algorithm, and the obliquity of binaural sleeve in target image is extracted by Hough transform. It rotates to the horizontal direction, then realizes the segmentation of the rotating binaural part, accumulates the pixel gray value in the vertical direction of the target image, and determines the length of the pin bearing part and the unloaded part at both ends. The range of the correlation ratio between these lengths when the pin is in normal operation and fault is summarized to judge the working state of the pin. Experiments show that the method can accurately detect the bad state of pin.
【作者單位】: 西南交通大學(xué)電氣工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(U1434203,51377136,51407147)
【分類號(hào)】:TP391.41;U226.8
本文編號(hào):2158298
[Abstract]:In order to solve the problem of loosening and shedding of pin of rotary binaural parts in catenary support device of high-speed railway, a new method for detecting the bad state of pin based on image invariance target location and gray distribution rule is proposed. By analyzing the images of field catenary support and suspension device, the location of binaural parts is realized by using SIFT (Scale Invariant Feature transform) algorithm and improved RANSAC (Random Sample Consensus) algorithm, and the obliquity of binaural sleeve in target image is extracted by Hough transform. It rotates to the horizontal direction, then realizes the segmentation of the rotating binaural part, accumulates the pixel gray value in the vertical direction of the target image, and determines the length of the pin bearing part and the unloaded part at both ends. The range of the correlation ratio between these lengths when the pin is in normal operation and fault is summarized to judge the working state of the pin. Experiments show that the method can accurately detect the bad state of pin.
【作者單位】: 西南交通大學(xué)電氣工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(U1434203,51377136,51407147)
【分類號(hào)】:TP391.41;U226.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 謝拴勤;郭振安;;基于熱棒工作狀態(tài)檢測(cè)問(wèn)題的分析[J];計(jì)算機(jī)測(cè)量與控制;2008年07期
2 ;2002年12月份三大干線軌道狀態(tài)檢測(cè)結(jié)果簡(jiǎn)報(bào)(0212號(hào))[J];鐵道建筑;2003年03期
3 ;2002年11月份三大干線軌道狀態(tài)檢測(cè)結(jié)果簡(jiǎn)報(bào)(0211號(hào))[J];鐵道建筑;2003年02期
4 余先元;康太平;郭成寶;;基于Nios處理器的磁浮車(chē)運(yùn)動(dòng)狀態(tài)檢測(cè)與控制[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年02期
5 ;[J];;年期
相關(guān)碩士學(xué)位論文 前3條
1 惠美玲;基于四元數(shù)小波變換的結(jié)構(gòu)狀態(tài)檢測(cè)研究[D];大連理工大學(xué);2016年
2 田安剛;列車(chē)司控運(yùn)停狀態(tài)檢測(cè)分析系統(tǒng)研究[D];青島科技大學(xué);2012年
3 楊紅梅;基于圖像處理的接觸網(wǎng)支持及懸掛裝置不良狀態(tài)檢測(cè)[D];西南交通大學(xué);2013年
,本文編號(hào):2158298
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2158298.html
最近更新
教材專著