基于顏色和SIFT特征的圖像檢索技術(shù)及其分布式實(shí)現(xiàn)
[Abstract]:Image retrieval has become one of the important means to obtain information. How to quickly and accurately obtain the required content from massive images has become the main bottleneck in the development of image retrieval. Therefore, this paper mainly studies how to select image features, design retrieval algorithm, build image retrieval system and improve system performance. The work of this paper can be divided into three parts: image feature analysis, retrieval algorithm design and parallel implementation based on Hadoop platform. In this paper, an image retrieval algorithm based on color correlation graph and SIFT feature is designed and implemented. On this basis, SIFT feature extraction and matching are limited to a certain range by using DBSCAN clustering algorithm. A content-based image retrieval system is constructed with the help of Hadoop big data processing framework. This paper firstly combs the development and achievement of image retrieval technology, discusses the image retrieval technology based on text, content and high-level semantics, and analyzes their advantages and disadvantages and applicable scenarios. Secondly, in order to improve the accuracy of retrieval, this paper selects the fusion of color autocorrelation and SIFT features. On this basis, we use the density-based DBSCAN clustering algorithm to cluster the 64-dimensional color features, and find the cluster closest to the sample image. Then the SIFT features are extracted and matched in this cluster to reduce the time complexity of the algorithm. Considering that when the Euclidean distance between the feature points of two images is relatively large, the traditional similarity measurement method based on the matching ratio of SIFT feature points will lose some spatial information. In this paper, the average Euclidean distance of SIFT feature matching points is used as the basis of similarity measurement. Finally, this paper realizes the synthesis feature extraction and matching based on MapReduce, and makes use of the idea of finding the adaptive neighborhood radius and the minimum number of neighborhood points in the AGD-DBSCAN algorithm to realize the MapReduce of the DBSCAN clustering process. In this paper, the recall rate, recall rate and system speedup, efficiency and expansion rate of the algorithm under Hadoop framework are evaluated, and the availability and extensibility of the algorithm are verified.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭啟財(cái);曾智勇;池燕玲;;改進(jìn)的基于顏色和SIFT特征的圖像檢索方法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2015年11期
2 陳勇平;郭文靜;王正;;基于顏色直方圖的木材單板圖像檢索技術(shù)研究[J];南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年05期
3 郭樹(shù)旭;趙靜;李雪妍;;基于中心-輪廓距離特征統(tǒng)計(jì)的形狀表示方法[J];電子與信息學(xué)報(bào);2015年06期
4 孫延維;雷建軍;蘇丹;;綜合顏色塊的直方圖圖像檢索算法[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
5 張永庫(kù);李云峰;孫勁光;;基于改進(jìn)顏色聚合向量與貢獻(xiàn)度聚類的圖像檢索算法[J];計(jì)算機(jī)科學(xué);2015年02期
6 謝莉;成運(yùn);曾接賢;余勝;;基于顏色和梯度方向共生直方圖的圖像檢索[J];計(jì)算機(jī)工程與應(yīng)用;2016年10期
7 張永庫(kù);李云峰;孫勁光;;綜合顏色和形狀特征聚類的圖像檢索[J];計(jì)算機(jī)應(yīng)用;2014年12期
8 顧曉東;楊誠(chéng);;新的顏色相似度衡量方法在圖像檢索中的應(yīng)用[J];儀器儀表學(xué)報(bào);2014年10期
9 沈新寧;王小龍;杜建洪;;基于顏色自相關(guān)圖和互信息的圖像檢索算法[J];計(jì)算機(jī)工程;2014年02期
10 董傲霜;宋宏亮;;基于SIFT特征和顏色融合的圖像檢索方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2013年S1期
相關(guān)碩士學(xué)位論文 前2條
1 姜文;基于Hadoop平臺(tái)的數(shù)據(jù)分析和應(yīng)用[D];北京郵電大學(xué);2011年
2 王炬;多媒體信息檢索客戶端系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)[D];中國(guó)科學(xué)院研究生院(計(jì)算技術(shù)研究所);1998年
,本文編號(hào):2155898
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2155898.html