基于稀疏混合估計(jì)的坡度超分辨率重構(gòu)方法研究
[Abstract]:Slope (Slope) is not only an important parameter of topographic features, but also an important evaluation index of geomorphologic change. Slopes on a regional scale are usually calculated by DEM (Digital Elevation Model). Because of the difficulty of obtaining high-resolution DEM data, and the loss of high-frequency and low-frequency parts of slope data at low resolution, Therefore, it is one of the ways to obtain high precision slope data by super-resolution reconstruction (downscaling change). In this study, the super-resolution reconstruction of slope data is studied based on the improved POCS (Projections Onto Convex Sets) algorithm and the sparse mixed estimation method. The main contents are as follows: (1) Super-resolution reconstruction of slope data is carried out through the improved POCS algorithm. In this algorithm, we first judge the multiple groups of DEM data read in, determine the approximate range of the data values according to the variance results of each data, and eliminate the data which is different from the average range, so as to obtain a better reconstruction effect. The method of bilinear interpolation is used to construct the reference data to make the results smoother and truer, and then the reference data are corrected. The correction process is to detect the edge of the slope data according to the large change of terrace slope. After obtaining the detection results and modifying them to the reference data. (2) the slope data is reconstructed by super-resolution based on sparse mixed estimation method. Firstly, wavelet transform is carried out on the slope data in approximate, horizontal, vertical and 45 擄directions. This step can fully extract the feature of slope data. Secondly, the dictionary of slope data block and the orthogonal matching tracing of the block are established. By constructing the sparse redundant block dictionary of slope data, the characteristic of slope data is induced, and the data is used as geometric block for orthogonal matching tracing. The integrity of the data can be guaranteed by geometric block method. Finally, the slope data is interpolated with wavelet and block dictionary. By calculating L _ 1 and L _ 2 normal forms at the same time, the sparse mixed estimation method takes full account of the regular variation of slope data, and combines multi-directional wavelet transform to interpolate gradient data in different directions. The integrity of the reconstructed data and the accuracy of the results are ensured. In this study, high resolution elevation data were obtained from aerial photogrammetry of unmanned aerial vehicle (UAV) and slope was extracted from DEM in Longquan terraced area of Gansu province. The improved POCS algorithm and sparse mixed estimation algorithm are used to reconstruct the DEM slope data in super-resolution, and compared with the nearest neighbor method, bilinear interpolation method and cubic convolution interpolation method. The results show that this method is superior to other methods in spatial distribution and error. In the comparison of the results of the two algorithms, the result of sparse mixed estimation is better than that of the improved POCS algorithm.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:P208
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張宏鳴;宋澤魯;楊江濤;楊勤科;王春梅;李銳;;DEM超分辨率重構(gòu)對(duì)梯田坡度提取的影響研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2017年01期
2 戚曹;朱桂斌;唐鑒波;牟宇飛;;基于稀疏表示的紅外視頻圖像超分辨率算法[J];計(jì)算機(jī)工程;2016年03期
3 苗晶;王春梅;文佳昕;土祥;馬思煜;;低分辨率遙感源DEM提取坡度降尺度研究——以延河流域?yàn)槔齕J];地下水;2015年05期
4 馬思煜;王春梅;土祥;苗晶;文佳昕;;坡度隨DEM分辨率變化的地統(tǒng)計(jì)學(xué)解釋——以黃土丘陵溝壑區(qū)為例[J];地下水;2015年05期
5 李麗;郭雙雙;梅樹(shù)立;張楠楠;;基于單元最鄰近匹配的蝗蟲(chóng)切片圖像修復(fù)方法[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年08期
6 陳健;王偉國(guó);劉廷霞;李博;姜潤(rùn)強(qiáng);高慧斌;;基于梯度圖的快速POCS超分辨率復(fù)原算法研究[J];儀器儀表學(xué)報(bào);2015年02期
7 劉帥;朱亞杰;薛磊;;一種結(jié)合稀疏表示和紋理分塊的遙感影像超分辨率方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2015年05期
8 李娟;吳謹(jǐn);陳振學(xué);楊莘;劉勁;;基于自學(xué)習(xí)的稀疏正則化圖像超分辨率方法[J];儀器儀表學(xué)報(bào);2015年01期
9 劉梓;宋曉寧;於東軍;唐振民;;基于多成分字典和稀疏表示的超分辨率重建算法[J];南京理工大學(xué)學(xué)報(bào);2014年01期
10 李夢(mèng)婕;李鏡;孫怡;;基于L~1范數(shù)和曲波系數(shù)雙約束的稀疏角度微分相位襯度計(jì)算機(jī)層析成像重建方法[J];光學(xué)學(xué)報(bào);2014年01期
相關(guān)博士學(xué)位論文 前3條
1 陳健;基于POCS的紅外弱小目標(biāo)超分辨率復(fù)原算法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2014年
2 孫璇;基于壓縮感知的認(rèn)知無(wú)線電頻譜感知算法研究[D];北京郵電大學(xué);2012年
3 劉雪冬;面向視覺(jué)監(jiān)控的視頻壓縮研究[D];華中科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 竇諾;基于稀疏表示與字典訓(xùn)練的含噪圖像超分辨重建方法[D];北京交通大學(xué);2014年
2 解晨;基于Landweber重構(gòu)的分布式壓縮視頻感知研究[D];蘇州大學(xué);2013年
3 侯坤;基于壓縮感知的重構(gòu)算法研究[D];重慶大學(xué);2013年
4 陳一帆;被動(dòng)毫米波成像超分辨算法研究[D];電子科技大學(xué);2012年
5 王尚禮;壓縮感知圖像重建算法研究[D];西安電子科技大學(xué);2012年
6 徐美芳;POCS圖像超分辨率重建技術(shù)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2010年
7 馮彬;基于小波理論的圖像非線性處理研究[D];中南大學(xué);2010年
8 石懷榮;小波分析在圖像處理中的應(yīng)用[D];山東科技大學(xué);2009年
9 王s,
本文編號(hào):2153795
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2153795.html