數(shù)據(jù)挖掘在通信網(wǎng)絡(luò)優(yōu)化中的應(yīng)用研究
[Abstract]:With the development of economy and technology, network communication has become one of the most important tools in national life. Network optimization is an important means to realize this task, and the premise of network optimization is that the basic operation of the current network must be clearly understood. In view of the low efficiency brought by the traditional manual analysis of network data and the large amount of network data, this paper puts forward the application of big data mining technology in the process of network analysis. First, the data is preprocessed, then the abnormal cells in the data are detected and removed. Then, the data of the cell network after removing the abnormal cells are clustered, and the cells with similar network characteristics are classified into a class. Finally, the data of each kind of cell is analyzed, the current network operation is obtained and the network optimization scheme is put forward. For the detection of abnormal cells, an improved local outlier (LOF) detection algorithm is adopted. The algorithm combines the LOF algorithm with the density distribution of the network data, determines the number of outliers through the density distribution of the network data, and obtains the outliers set D1. Then the LOF algorithm is used to determine the same number of outliers. The intersection of D1 and D2 is taken as the final set of outliers. The simulation on open source data shows that the algorithm has higher accuracy rate and lower false alarm rate and overcomes the shortcoming that LOF algorithm must know the number of outliers. In the cell clustering algorithm, the improved K-means clustering algorithm is used. The traditional K-means clustering algorithm has two defects: the randomness of initial clustering center selection and the need to input the number of clusters manually. The improved clustering algorithm selects the dense and mutually exclusive points as the initial clustering centers according to certain rules. At the same time, the number of cluster centers is chosen as the final clustering number when the average maximum similarity coefficient (DBI) is minimum. The improved algorithm can determine the number of clusters while optimizing the cluster center. The simulation on open source data shows that the algorithm has high accuracy, fast convergence speed and small error. Finally, the network characteristics of each cell after clustering are analyzed. The relationship between network connection equipment, network utilization rate and network drop-off is analyzed. In each case, a network accessibility margin is obtained. According to the network accessibility margin, the network optimization scheme is proposed to avoid network overload.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王朔;顧進(jìn)廣;;基于K值改進(jìn)的K-means算法在入侵檢測(cè)中的應(yīng)用[J];工業(yè)控制計(jì)算機(jī);2014年07期
2 曾澤林;段明秀;;基于密度的聚類算法DBSCAN的研究與實(shí)現(xiàn)[J];科技信息;2012年30期
3 仝雪姣;孟凡榮;王志曉;;對(duì)k-means初始聚類中心的優(yōu)化[J];計(jì)算機(jī)工程與設(shè)計(jì);2011年08期
4 王品;黃焱;;改進(jìn)的OPTICS算法在調(diào)制識(shí)別中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
5 周世兵;徐振源;唐旭清;;K-means算法最佳聚類數(shù)確定方法[J];計(jì)算機(jī)應(yīng)用;2010年08期
6 韓凌波;王強(qiáng);蔣正鋒;郝志強(qiáng);;一種改進(jìn)的k-means初始聚類中心選取算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年17期
7 周涓;熊忠陽(yáng);張玉芳;任芳;;基于最大最小距離法的多中心聚類算法[J];計(jì)算機(jī)應(yīng)用;2006年06期
8 榮秋生,顏君彪,郭國(guó)強(qiáng);基于DBSCAN聚類算法的研究與實(shí)現(xiàn)[J];計(jì)算機(jī)應(yīng)用;2004年04期
9 楊風(fēng)召,朱揚(yáng)勇,施伯樂(lè);IncLOF:動(dòng)態(tài)環(huán)境下局部異常的增量挖掘算法[J];計(jì)算機(jī)研究與發(fā)展;2004年03期
10 鄭 哲;移動(dòng)通信網(wǎng)絡(luò)優(yōu)化淺析[J];電子質(zhì)量;2002年04期
相關(guān)碩士學(xué)位論文 前10條
1 王傳玉;基于異常數(shù)據(jù)挖掘算法的研究[D];天津理工大學(xué);2016年
2 黨永亮;大數(shù)據(jù)分析在移動(dòng)通信網(wǎng)絡(luò)優(yōu)化中的應(yīng)用研究[D];華中師范大學(xué);2015年
3 楊陽(yáng);數(shù)據(jù)挖掘K-means聚類算法的研究[D];湖南師范大學(xué);2015年
4 耿靈;基于EPC網(wǎng)絡(luò)的社會(huì)影響力最大化問(wèn)題[D];上海交通大學(xué);2015年
5 楊棟;針對(duì)基站聚類和用戶行為分析的移動(dòng)通信網(wǎng)絡(luò)資源優(yōu)化技術(shù)研究[D];北京郵電大學(xué);2014年
6 全擁;基于eID的虛擬資產(chǎn)審計(jì)和溯源關(guān)鍵技術(shù)研究與實(shí)現(xiàn)[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
7 劉鳳芹;K-means聚類算法改進(jìn)研究[D];山東師范大學(xué);2013年
8 詹偉成;數(shù)據(jù)挖掘在移動(dòng)通信性能指標(biāo)中的應(yīng)用研究[D];上海交通大學(xué);2012年
9 李偉斌;數(shù)據(jù)挖掘在移動(dòng)網(wǎng)絡(luò)優(yōu)化中的應(yīng)用[D];北京郵電大學(xué);2010年
10 沈亮;數(shù)據(jù)挖掘在移動(dòng)通信網(wǎng)絡(luò)優(yōu)化中的應(yīng)用[D];上海交通大學(xué);2009年
,本文編號(hào):2143438
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2143438.html