基于深度學(xué)習(xí)混合模型的人臉檢測(cè)算法研究
[Abstract]:Face detection is one of the important research topics in the field of pattern recognition. In practical applications, the collected face images are often affected by the surrounding environment, resulting in the changes of face pose, occlusion and complex background, and so on. As a result, the accuracy and robustness of face detection sometimes can not meet the needs of practical applications. Based on the theory of depth learning, a face detection algorithm based on the hybrid model of depth learning is proposed in this paper. In order to reduce the influence of partial occlusion and multi-pose on face detection, a hybrid model of depth learning is established to study the local features and location of human face by using the strong interrelation between each feature. The main contents of this paper are as follows: 1. Based on the theory of depth learning, three kinds of structures and their typical models of deep learning are analyzed and studied from the aspects of feature extraction, training and convergence time. Secondly, two methods of depth confidence network and convolutional neural network are simulated and compared with each other in terms of classification error and convergence. The experimental results show that the percentage of classification error using convolution neural network method is lower than that of using depth confidence network method, but the convergence rate is higher. The convergence speed of depth confidence network is better than that of convolution neural network. Therefore, according to the advantages and disadvantages of the two typical models, a convolution pool constrained Boltzmann machine model unit is constructed in this paper. The convolution layer and the pool layer in the convolution neural network are added to the hidden layer in the constrained Boltzmann machine. The basic unit of the hybrid model of deep learning is constructed. The improved network can input the original image directly without preprocessing, its structure is more consistent with the topological structure of image input, and it is more suitable for image training and learning. The single depth model can solve the problems of low learning efficiency and high false detection rate in face detection. In this paper, a hybrid model based on depth learning, convolution pool depth confidence network (Convolutional pooling deep belief network), is proposed to solve the problem of face detection. Firstly, the previously constructed convolution pool constrained Boltzmann machine is regarded as the basic unit of the depth model, and then the multilayer basic unit structure is established, and the correlation between the deep structure of the depth model is used. Learn the correlation between the location of each feature and the feature. When the occlusion is detected, the location of the hidden feature is predicted according to the local features detected by learning, and the face is detected by the complete face feature. Experimental results show that the proposed algorithm can accelerate the convergence speed, improve the accuracy of face detection under partial occlusion, and is robust to the change of pose.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前5條
1 張春霞;姬楠楠;王冠偉;;受限波爾茲曼機(jī)[J];工程數(shù)學(xué)學(xué)報(bào);2015年02期
2 顧偉;劉文杰;朱忠浩;許凱;;一種基于膚色模型和模板匹配的人臉檢測(cè)算法[J];微型電腦應(yīng)用;2014年07期
3 孫志軍;薛磊;許陽(yáng)明;王正;;深度學(xué)習(xí)研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2012年08期
4 張學(xué)工;關(guān)于統(tǒng)計(jì)學(xué)習(xí)理論與支持向量機(jī)[J];自動(dòng)化學(xué)報(bào);2000年01期
5 盧春雨,張長(zhǎng)水,聞芳,閻平凡;基于區(qū)域特征的快速人臉檢測(cè)法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年01期
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前9條
1 許蕓玉;非限制條件下的多姿態(tài)人臉檢測(cè)算法研究[D];蘭州理工大學(xué);2016年
2 呂澤江;基于POCS算法的人臉檢測(cè)研究[D];吉林大學(xué);2016年
3 奉俊鵬;基于非下采樣Contourlet梯度方向直方圖的人臉識(shí)別方法研究[D];湘潭大學(xué);2015年
4 趙志國(guó);基于深度學(xué)習(xí)的低分辯率多恣態(tài)人臉識(shí)別[D];大連理工大學(xué);2015年
5 劉智;人臉檢測(cè)算法的并行化研究與實(shí)現(xiàn)[D];中南大學(xué);2014年
6 祁佳;視頻中人臉檢索與事件檢測(cè)技術(shù)研究[D];西安電子科技大學(xué);2013年
7 張志偉;基于人臉識(shí)別的媒資視頻檢索技術(shù)的研究與實(shí)踐[D];北京郵電大學(xué);2013年
8 董立新;基于先驗(yàn)知識(shí)的人臉檢測(cè)算法研究[D];大連理工大學(xué);2010年
9 龍敏;基于多示例學(xué)習(xí)的Adaboost算法及其在人臉檢測(cè)中的應(yīng)用[D];上海交通大學(xué);2007年
,本文編號(hào):2142039
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2142039.html