基于改進(jìn)相似性度量的項(xiàng)目協(xié)同過(guò)濾推薦算法
[Abstract]:In order to solve the problem that the traditional collaborative filtering recommendation algorithm has a poor effect on cold start, a project collaborative filtering recommendation algorithm (ICF_IPSS) based on item similarity measurement method (IPSS) is proposed, the core of which is a new project similarity measurement method. The method consists of two parts: score similarity and structural similarity: the score similarity part fully considers the difference between the two items, the difference between the item score and the median score, and the difference between the item score and other average scores; The structural similarity part defines the proportion of common scoring items to all items and penalizes the inverse item frequency (IIF) coefficient of active users. The accuracy of the algorithm is tested under Movie Lens and Jester data sets. Under the Movie Lens dataset, When the number of nearest neighbors is 10:00, the average absolute deviation (MAE) and root mean square error (RMSE) are 3.06% and 1.20% lower than those of the ICF_JMSD algorithm based on Jaccard coefficient, respectively, and the accuracy and call rate of ICFIPSS are lower when the number of recommended items is 10:00. The return rate was 67.79% and 67.86% higher than that of ICF_JMSD, respectively. The experimental results show that the project collaborative filtering algorithm based on IPSS is superior to the item cooperative filtering algorithm based on traditional similarity measure in prediction accuracy and classification accuracy, such as ICF_JMSD, etc.
【作者單位】: 東北農(nóng)業(yè)大學(xué)工程學(xué)院;東北農(nóng)業(yè)大學(xué)理學(xué)院;
【基金】:公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)二級(jí)任務(wù)(201503116-04-06) 黑龍江省博士后基金資助項(xiàng)目(LBH-Z15020) 國(guó)家科技支撐計(jì)劃專題任務(wù)(2014BAD12B01-1-3) 農(nóng)業(yè)部農(nóng)業(yè)水資源高效利用重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助項(xiàng)目(2015004) 黑龍江省哲學(xué)社會(huì)科學(xué)研究規(guī)劃年度項(xiàng)目(16YB17)~~
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
2 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
3 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
4 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
5 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
6 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
7 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
8 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
9 尹長(zhǎng)青;楊單稷;;基于視頻的智能推薦算法[J];科技傳播;2011年22期
10 吳泓辰;王新軍;成勇;彭朝暉;;基于協(xié)同過(guò)濾與劃分聚類的改進(jìn)推薦算法[J];計(jì)算機(jī)研究與發(fā)展;2011年S3期
相關(guān)會(huì)議論文 前7條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 梁莘q,
本文編號(hào):2139467
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2139467.html