天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

基于用戶興趣的協(xié)同過(guò)濾算法研究

發(fā)布時(shí)間:2018-07-05 20:14

  本文選題:用戶興趣 + 時(shí)間窗; 參考:《安徽理工大學(xué)》2017年碩士論文


【摘要】:隨著web 2.0時(shí)代的到來(lái),數(shù)據(jù)量呈指數(shù)式增長(zhǎng)。面對(duì)海量數(shù)據(jù)人們無(wú)法從中迅速找到自己所需資源。為了解決人們?cè)谫Y源檢索和選擇上的問(wèn)題,學(xué)者們提出了推薦系統(tǒng)。在推薦系統(tǒng)中,協(xié)同過(guò)濾算法是如今應(yīng)用最廣泛的推薦算法之一。但在實(shí)踐應(yīng)用上,傳統(tǒng)協(xié)同過(guò)濾算法在推薦時(shí)未考慮到針對(duì)用戶興趣變化及項(xiàng)目自身屬性進(jìn)行推薦;從而影響了推薦的質(zhì)量。為了解決此類問(wèn)題,本文主要針對(duì)用戶興趣及項(xiàng)目屬性這兩方面展開(kāi)了著重研究,提出相關(guān)改進(jìn)與創(chuàng)新如下:1)研究分析現(xiàn)有推薦算法的現(xiàn)狀與不足;并通過(guò)用戶已評(píng)價(jià)項(xiàng)目的屬性及評(píng)分構(gòu)建出用戶興趣模型;有效解決了用戶興趣不易捕捉的問(wèn)題。2)針對(duì)傳統(tǒng)協(xié)同過(guò)濾算法在推薦中忽視了推薦項(xiàng)目自身屬性;因此提出了基于用戶興趣的協(xié)同過(guò)濾算法,該算法結(jié)合了項(xiàng)目自身屬性和用戶興趣模型給出了用戶興趣度,促使推薦過(guò)程中忽視的項(xiàng)目屬性問(wèn)題得以解決。3)考慮到用戶興趣隨時(shí)間變化產(chǎn)生的偏移,引入了艾賓浩斯遺忘定律及滑動(dòng)時(shí)間窗來(lái)體現(xiàn)出用戶的興趣偏移,并對(duì)用戶興趣協(xié)同過(guò)濾算法進(jìn)行了改進(jìn)優(yōu)化。實(shí)驗(yàn)數(shù)據(jù)選用于經(jīng)典的MovieLens數(shù)據(jù)集;對(duì)提出的用戶興趣協(xié)同過(guò)濾算法及改進(jìn)后算法進(jìn)行了實(shí)驗(yàn)。驗(yàn)證結(jié)果表明,我們提出的算法在推薦中有效解決了用戶興趣捕捉及項(xiàng)目冷啟動(dòng)問(wèn)題,推薦的質(zhì)量也得到提升。
[Abstract]:With the arrival of the web 2.0 era, the amount of data increases exponentially. In the face of massive data, people can not quickly find their own resources. In order to solve the problem of resource retrieval and selection, scholars put forward the recommendation system. Collaborative filtering is one of the most widely used recommendation algorithms in recommendation systems. In practice, however, the traditional collaborative filtering algorithm does not take into account the change of user interest and the properties of the item itself, which affects the quality of recommendation. In order to solve this kind of problem, this paper mainly focuses on the user interest and the item attribute, and puts forward the related improvement and innovation as follows: 1) Research and analysis the current situation and the insufficiency of the existing recommendation algorithm; The user interest model is constructed through the attributes and scores of the items evaluated by the user, and the problem of user interest capture is solved effectively. 2) in view of the traditional collaborative filtering algorithm, the attributes of the recommendation items are ignored in the recommendation process. Therefore, a collaborative filtering algorithm based on user interest is proposed, which combines the properties of the project itself and the user interest model to give the user interest degree. In order to solve the problem of item attribute, which is neglected in the recommendation process, this paper introduces the Ibinhaus' law of forgetting and sliding time window to reflect the deviation of user's interest, considering the deviation of user's interest over time. The collaborative filtering algorithm of user interest is improved and optimized. The experimental data are selected from the classical Movie Lens dataset, and the proposed collaborative filtering algorithm and the improved algorithm are tested. The verification results show that the proposed algorithm can effectively solve the problems of user interest capture and project cold start, and improve the quality of recommendation.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳毅濤;張興明;王興茂;李晗;;基于用戶模糊相似度的協(xié)同過(guò)濾算法[J];通信學(xué)報(bào);2016年01期

2 韓亞楠;曹菡;劉亮亮;;基于評(píng)分矩陣填充與用戶興趣的協(xié)同過(guò)濾推薦算法[J];計(jì)算機(jī)工程;2016年01期

3 甘早斌;曾燦;馬堯;魯宏偉;;基于信任網(wǎng)絡(luò)的C2C電子商務(wù)信任算法[J];軟件學(xué)報(bào);2015年08期

4 宋文君;郭強(qiáng);劉建國(guó);;時(shí)間窗口對(duì)個(gè)性化推薦算法的影響研究[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2015年01期

5 曾東紅;汪濤;嚴(yán)水發(fā);賴慧芳;;一種基于指數(shù)遺忘函數(shù)的協(xié)同過(guò)濾算法[J];科技廣場(chǎng);2013年07期

6 印桂生;崔曉暉;馬志強(qiáng);;遺忘曲線的協(xié)同過(guò)濾推薦模型[J];哈爾濱工程大學(xué)學(xué)報(bào);2012年01期

7 張光衛(wèi);李德毅;李鵬;康建初;陳桂生;;基于云模型的協(xié)同過(guò)濾推薦算法[J];軟件學(xué)報(bào);2007年10期

8 鄧愛(ài)林,左子葉,朱揚(yáng)勇;基于項(xiàng)目聚類的協(xié)同過(guò)濾推薦算法[J];小型微型計(jì)算機(jī)系統(tǒng);2004年09期

9 鄧愛(ài)林,朱揚(yáng)勇,施伯樂(lè);基于項(xiàng)目評(píng)分預(yù)測(cè)的協(xié)同過(guò)濾推薦算法[J];軟件學(xué)報(bào);2003年09期

10 蔡登;盧增祥;李衍達(dá);;信息協(xié)同過(guò)濾[J];計(jì)算機(jī)科學(xué);2002年06期

,

本文編號(hào):2101615

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2101615.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6381d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日本丁香婷婷欧美激情| 国产毛片对白精品看片| 内用黄老外示儒术出处| 欧美亚洲国产日韩一区二区| 国产精品内射婷婷一级二级| 国产av一区二区三区久久不卡| 色丁香之五月婷婷开心| 中日韩免费一区二区三区| 成人精品日韩专区在线观看| 亚洲最新中文字幕一区| 久久夜色精品国产高清不卡| 欧美老太太性生活大片| 亚洲精品福利视频在线观看| 日本高清一道一二三区四五区| 精品欧美一区二区三久久| 少妇特黄av一区二区三区| 日韩欧美国产精品自拍| 亚洲天堂一区在线播放| 亚洲国产精品无遮挡羞羞| 加勒比日本欧美在线观看| 日本女优一区二区三区免费| 亚洲三级视频在线观看免费| 欧美成人国产精品高清| 欧美国产日本免费不卡| 国产水滴盗摄一区二区| 国产一区二区三区口爆在线| 国产成人精品在线播放| 久久精品国产第一区二区三区| 少妇熟女精品一区二区三区| 欧美午夜性刺激在线观看| 日本午夜免费啪视频在线| 亚洲免费视频中文字幕在线观看| 国产精品偷拍视频一区| 国产av大片一区二区三区| 91蜜臀精品一区二区三区| 千仞雪下面好爽好紧好湿全文| 日本加勒比在线观看不卡| 欧美日韩国产福利在线观看| 中文字幕日韩精品人一妻| 亚洲黄片在线免费小视频| 久久精品国产亚洲av久按摩 |