基于視感知特征的多光譜高保真降維方法研究
發(fā)布時間:2018-05-27 03:27
本文選題:多光譜 + 視覺特征函數(shù)。 參考:《光譜學與光譜分析》2017年01期
【摘要】:為解決多光譜數(shù)據在降維壓縮過程中的顏色精度保持問題,提出一種基于人眼視覺感知特征的多光譜數(shù)據高保真降維壓縮方法(VPCM)。研究首先依據人眼視覺響應的非線性解析特征,成功構建了同時綜合人眼光譜特征與色度特征的變換函數(shù),并通過進一步構造的優(yōu)化函數(shù)對其進行修正,以針對不同的樣本集找到最佳變換方向,而后利用修正后的視覺特征變換函數(shù)對光譜樣本集進行空間變換(Γ(S)=C),然后利用主成分分析方法對經視覺特征函數(shù)變換后樣本集光譜數(shù)據進行降維壓縮處理,并通過逆變換重構出樣本集光譜數(shù)據(Γ-1(C)=^S),進行降維評價。實驗選取四類具有典型代表性的數(shù)據集作為測試樣本,分別以D50/2°條件下的CIELab色差和75組典型照明光源(鎢絲燈、熒光燈和LED燈)下的平均同色異譜指數(shù)(MMI)作為色度主要評價指標,同時對比了Lab-PQR和2-XYZ兩種較為先進的光譜降維算法。實驗結果為VPCM方法的MMI值最小,其次是LabPQR,而2-XYZ的表現(xiàn)較差;VPCM方法在75組光源下對四組樣本集的平均重構色差ΔEab也為最小,且最大樣本平均色差及方差均要小于其他兩種方法;VPCM方法的重構光譜精度介于Lab-PQR和2-XYZ之間,Lab-PQR的重構光譜精度最高。實驗結果顯示新方法色度壓縮精度整體優(yōu)于對比的兩種方法,在變換參考條件下具有良好的色差穩(wěn)定性,能夠較好的應用于多光譜數(shù)據色度高保真壓縮。
[Abstract]:In order to maintain the color accuracy of multispectral data in the process of dimensionality reduction, a high fidelity dimensionality reduction method for multispectral data based on human visual perception is proposed. Firstly, according to the nonlinear analytical features of human visual response, a transform function combining the spectral and chromatic features of human eyes is successfully constructed and modified by further optimization function. To find the best transformation direction for different sample sets, Then, the modified visual feature transform function is used to transform the spectral sample set (螕 ~ S), and then the spectral data of the sample set transformed by the visual feature function are reduced by the principal component analysis (PCA) method. The spectral data of the sample set (螕 -1) are reconstructed by inverse transformation, and the dimension reduction evaluation is carried out. Four kinds of typical data sets were selected as test samples. The CIELab chromatic aberration at D50 / 2 擄and 75 typical lighting sources (tungsten filament lamp) were used respectively. The average isochromatic heterospectral index (MMI) of fluorescent lamp and LED lamp is used as the main evaluation index of chromaticity. Two advanced spectral dimensionality reduction algorithms, Lab-PQR and 2-XYZ, are compared at the same time. The experimental results show that the MMI value of VPCM method is the smallest, the second is LabPQR, and the average reconstructed chromatic difference 螖 Eab of 2-XYZ method for four groups of samples under 75 groups of light sources is also the smallest. The average color difference and variance of the maximum sample are smaller than those of the other two methods. The reconstructed spectral accuracy of the VPCM method is between Lab-PQR and 2-XYZ. The reconstructed spectral accuracy of Lab-PQR is the highest. The experimental results show that the new method is superior to the two contrast methods in the accuracy of chromaticity compression, and it has good color difference stability under the condition of conversion reference, and can be applied to the high fidelity compression of multispectral data.
【作者單位】: 武漢大學印刷與包裝系;
【基金】:國家自然科學基金項目(61275172) 國家文物局項目(2013-YB-HT-034) 國家重點基礎研究發(fā)展計劃項目(2012CB725302)資助
【分類號】:TP391.41
【相似文獻】
相關期刊論文 前10條
1 范恩;儲s,
本文編號:1940227
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1940227.html
最近更新
教材專著