不同光照條件下農(nóng)田圖像分割方法的研究
本文選題:農(nóng)田圖像分割 + 顏色因子。 參考:《西北農(nóng)林科技大學》2017年碩士論文
【摘要】:由于受到天氣、溫度和光照等因素的影響,智能農(nóng)業(yè)機器人感知環(huán)境信息時會存在一定的不確定性。為進一步提高智能農(nóng)業(yè)機器人的環(huán)境感知能力,需對不同光照條件下的農(nóng)田圖像進行分割。本研究以西北農(nóng)林科技大學北校區(qū)試驗田三葉期至五葉期玉米農(nóng)田圖像為研究對象,采用顏色因子法,結合閾值分割法和機器學習法實現(xiàn)了不同光照條件下的農(nóng)田圖像分割,并通過主觀評價法和客觀評價法完成算法分析及驗證。本研究的主要內(nèi)容和結論有:(1)農(nóng)田圖像的獲取及分類。為實現(xiàn)獲取農(nóng)田圖像的自動化分類,提出了基于數(shù)學統(tǒng)計學知識分析農(nóng)田圖像直方圖的方法。實驗發(fā)現(xiàn),不同光照條件下農(nóng)田圖像R,G,B顏色通道對應的直方圖,其均值指標和偏度指標在任何區(qū)間上均沒有重合,可作為農(nóng)田圖像自動分類的標準。與人工分類方法對比后發(fā)現(xiàn),本文方法分類誤差率最大為10.52%,說明采用上述方法可實現(xiàn)農(nóng)田圖像的自動分類。(2)光照充足或光照偏弱條件下的農(nóng)田圖像分割。針對光照充足條件下農(nóng)田圖像顏色特征較為明顯的特點,主要采用直方圖均值法和大津法實現(xiàn)了農(nóng)田圖像的分割;針對光照偏弱導致農(nóng)田圖像顏色和形狀特征不顯著的特性,主要采用無監(jiān)督學習中的模糊C均值聚類算法(FCM)實現(xiàn)了農(nóng)田圖像的分割。最后完成兩類實驗結果的剖析比較。由于光照充足和光照偏弱條件下農(nóng)田圖像分割目標十分復雜,因此主要采用了主觀評價法分析實驗結果。實驗發(fā)現(xiàn),兩類農(nóng)田圖像分割結果平均主觀質(zhì)量分數(shù)分別為4.26和4.06,則根據(jù)CCIR500五級評分質(zhì)量尺度和妨礙尺度說明,采用本文方法圖像分割質(zhì)量較好,可實現(xiàn)復雜農(nóng)田圖像的分割。(3)光照偏強條件下的農(nóng)田圖像分割。針對光照偏強導致大量高光點對圖像分割精度干擾的問題,本文提出采用改進的簡單線性迭代聚類算法(SLIC)完成圖像預處理提取超像素,提取特征向量并通過曲線進行初步篩選,然后建立分類器實現(xiàn)農(nóng)田圖像的分類。分類器主要選擇貝葉斯和支持向量機(SVM)。實驗發(fā)現(xiàn),改進的SLIC在不影響圖像預處理結果的前提下可縮短運行時間;SVM總體分類精度優(yōu)于貝葉斯,平均總體分類精度可達到94.83%,說明采用SVM可有效實現(xiàn)含大量高光點簡單農(nóng)田圖像分割。以農(nóng)田圖像自動分類為研究基礎,本文基本完成了不同光照條件下的農(nóng)田圖像分割,為提高智能農(nóng)業(yè)機器人感知環(huán)境信息能力提供了有力的保障。
[Abstract]:Due to the influence of weather, temperature and light, the intelligent agricultural robot will have some uncertainty when it perceives environmental information. In order to improve the environment perception ability of intelligent agricultural robot, it is necessary to segment farmland images under different illumination conditions. In this study, the field images of maize in three leaf period to five leaf stage in the experimental field of North Campus of Northwestern University of Agriculture and Forestry Science and Technology were studied. Using color factor method, combining threshold segmentation method and machine learning method, the field image segmentation under different illumination conditions was realized. The algorithm is analyzed and verified by subjective evaluation and objective evaluation. The main contents and conclusions of this study are: 1) farmland image acquisition and classification. In order to achieve automatic classification of farmland images, a histogram analysis method based on mathematical statistics was proposed. It was found that the histogram corresponding to the color channel of RDG _ (B) in farmland images under different illumination conditions had no coincidence in any interval, so it could be used as a standard for automatic classification of farmland images. Comparing with the artificial classification method, it is found that the maximum classification error rate of this method is 10.52, which shows that the above method can be used to realize the automatic classification of farmland images with sufficient illumination or weak illumination. In view of the obvious color characteristics of farmland images under sufficient illumination, the histogram mean method and Otsu method are mainly used to segment farmland images, and the weak illumination leads to the characteristics that the color and shape features of farmland images are not significant. The fuzzy C-means clustering algorithm (FCM) in unsupervised learning is used to segment farmland images. Finally, two kinds of experimental results are analyzed and compared. Because the target of farmland image segmentation is very complex under the condition of sufficient illumination and weak illumination, the subjective evaluation method is mainly used to analyze the experimental results. The experimental results show that the average subjective mass scores of the two kinds of farmland images are 4.26 and 4.06, respectively. According to the quality scale and hindrance scale of CCIR500 five-grade score, the image segmentation quality is better by using this method. The segmentation of complex farmland image can be realized under the condition of strong illumination. Aiming at the problem that a large number of high light points interfere with image segmentation accuracy due to the strong illumination, an improved simple linear iterative clustering algorithm (SLICs) is proposed to extract super-pixels, extract feature vectors and screen through curves. Then a classifier is established to realize the classification of farmland images. The classifier mainly selects Bayes and support Vector Machine (SVM). The experimental results show that the improved SLIC can shorten the running time and the overall classification accuracy is better than that of Bayes without affecting the result of image preprocessing. The average overall classification accuracy can reach 94.83, which shows that using SVM can effectively realize the segmentation of simple farmland images with a large number of high light points. Based on the automatic classification of farmland images, the segmentation of farmland images under different illumination conditions is basically completed in this paper, which provides a powerful guarantee for improving the ability of intelligent agricultural robots to perceive environmental information.
【學位授予單位】:西北農(nóng)林科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S126;TP391.41
【參考文獻】
相關期刊論文 前10條
1 陳曉倩;唐晶磊;苗榮慧;;正態(tài)分布下最小錯誤率的變量噴施貝葉斯決策[J];農(nóng)機化研究;2016年07期
2 劉瓊;史諾;;基于Lab和YUV顏色空間的農(nóng)田圖像分割方法[J];國外電子測量技術;2015年04期
3 夏朝俊;顧春新;李彬;;精準農(nóng)業(yè)無線傳感器網(wǎng)絡的研究與實現(xiàn)[J];機電工程;2015年03期
4 唐萬;胡俊;張暉;吳攀;賀華;;Kappa系數(shù):一種衡量評估者間一致性的常用方法(英文)[J];上海精神醫(yī)學;2015年01期
5 伍艷蓮;趙力;姜海燕;郭小清;黃芬;;基于改進均值漂移算法的綠色作物圖像分割方法[J];農(nóng)業(yè)工程學報;2014年24期
6 朱軍;胡文波;;貝葉斯機器學習前沿進展綜述[J];計算機研究與發(fā)展;2015年01期
7 宋艷濤;紀則軒;孫權森;;基于圖像片馬爾科夫隨機場的腦MR圖像分割算法[J];自動化學報;2014年08期
8 孟慶寬;何潔;仇瑞承;馬曉丹;司永勝;張漫;劉剛;;基于機器視覺的自然環(huán)境下作物行識別與導航線提取[J];光學學報;2014年07期
9 畢凱;王曉丹;姚旭;周進登;;一種基于Bagging和混淆矩陣的自適應選擇性集成[J];電子學報;2014年04期
10 彭紅星;鄒湘軍;陳麗娟;熊俊濤;陳科尹;林桂潮;;基于雙次Otsu算法的野外荔枝多類色彩目標快速識別[J];農(nóng)業(yè)機械學報;2014年04期
相關博士學位論文 前2條
1 張小峰;基于模糊聚類算法的醫(yī)學圖像分割技術研究[D];山東大學;2014年
2 汪啟偉;圖像直方圖特征及其應用研究[D];中國科學技術大學;2014年
相關碩士學位論文 前5條
1 于振;基于模糊理論的超像素算法研究及應用[D];山東大學;2014年
2 黃秋晗;基于超像素的兩階段圖像分割[D];華南理工大學;2014年
3 李應彬;融合深度信息的圖像分割算法研究[D];浙江理工大學;2014年
4 劉春燕;圖像分割評價方法研究[D];西安電子科技大學;2011年
5 王坤;數(shù)字圖像分割和質(zhì)量評價方法的研究[D];東北大學;2006年
,本文編號:1880178
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1880178.html