基于RASM的緊支撐徑向基函數(shù)自適應(yīng)并行地形插值方法
發(fā)布時(shí)間:2018-05-07 08:33
本文選題:地形重建 + 區(qū)域分解 ; 參考:《武漢大學(xué)學(xué)報(bào)(信息科學(xué)版)》2017年09期
【摘要】:快速、準(zhǔn)確地對(duì)地形進(jìn)行重建以生成數(shù)字高程模型是地理信息表達(dá)的重要研究?jī)?nèi)容,徑向基函數(shù)(radial basis function,RBF)作為一種插值性能較優(yōu)的空間插值方法,特別適合于重建復(fù)雜的地形模型,但隨著已知地形采樣點(diǎn)數(shù)量的增加,RBF插值模型求解速度變慢,同時(shí)插值矩陣過(guò)于龐大而導(dǎo)致插值模型求解困難甚至求解失敗。針對(duì)這個(gè)問(wèn)題,本文基于區(qū)域分解和施瓦茲并行原理進(jìn)行地形插值,以緊支撐徑向基函數(shù)(compact support RBF,CSRBF)構(gòu)建基于所有地形采樣數(shù)據(jù)的全局插值矩陣,并自適應(yīng)求解子區(qū)域CSRBF插值節(jié)點(diǎn)緊支撐半徑,基于限制性加性施瓦茲方法(restricted additive Schwarz method,RASM)采用多核并行架構(gòu)對(duì)各局部子區(qū)域的插值矩陣進(jìn)行求解。以某地區(qū)數(shù)字高程模型(DEM)數(shù)據(jù)進(jìn)行插值實(shí)驗(yàn),結(jié)果表明,本文方法能夠?qū)Υ笠?guī)模地形數(shù)據(jù)進(jìn)行準(zhǔn)確重建,并且具有較高的求解效率。
[Abstract]:Rapid and accurate reconstruction of terrain to generate digital elevation model is an important research content of geographic information expression. Radial basis function (RBF) is a spatial interpolation method with better interpolation performance. It is especially suitable for reconstruction of complex terrain model, but with the increase of the number of known topographic sampling points, the solution speed of RBF interpolation model becomes slower, and the interpolation matrix is too large, which leads to the difficulty and even failure of the interpolation model. In order to solve this problem, terrain interpolation is based on domain decomposition and Schwartz parallel principle. A global interpolation matrix based on all terrain sampling data is constructed by compact supported radial basis function (RBF). The compact support radius of subregion CSRBF interpolation nodes is solved adaptively. Based on restricted additive Schwarz method RASM (restricted additive Schwarz method), the interpolation matrices of local subregions are solved using a multi-core parallel architecture. The interpolation experiment based on the digital elevation model (DEM) data of a certain area shows that the proposed method can reconstruct the large-scale terrain data accurately and has a high efficiency.
【作者單位】: 南京師范大學(xué)虛擬地理環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室;南京師范大學(xué)江蘇省地理信息資源開發(fā)與利用協(xié)同創(chuàng)新中心;云南師范大學(xué)旅游與地理科學(xué)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(41271383,41371374,41471102)~~
【分類號(hào)】:P208
,
本文編號(hào):1856206
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1856206.html
最近更新
教材專著