基于ECG生物識別并行化的研究與實現(xiàn)
發(fā)布時間:2018-04-26 22:30
本文選題:大數(shù)據(jù) + 基于基準點特征; 參考:《華中科技大學》2016年碩士論文
【摘要】:在過去十幾年中,生物識別技術(shù)已經(jīng)相當成熟了,它是一門利用統(tǒng)計學方法和人體生理活動數(shù)據(jù)來驗證個人身份的技術(shù)。心電信號ECG(Electrocardiograph)本身因人而異的,并且在每個人當中不可復制,目前大量的ECG信號用于生物識別技術(shù),最新研究指出了ECG生物識別技術(shù)的一個待解決問題:在應用場景多樣化和人群數(shù)量龐大的情況下,如何充分的利用ECG各類特征來保持識別魯棒性的問題。針對上述問題,本研究首先利用傳統(tǒng)的特征提取方法,將基于特征點特征(Fiducial based features)和基于非特征點特征(Non-Fiducial based features)進行結(jié)合,提取一種結(jié)合Fiducial和Non-fidicuial的混合特征提取方法,以完成ECG信號多維特征的建模。其中,Fiducial特征包括ECG信號的波幅特征、ECG信號的時序特征和ECG信號的頻譜特征;Non-Fiducial特征包括ECG心電圖的波形形狀。進而將兩類特征混合并進行統(tǒng)一建模,經(jīng)驗證,在多樣化場景中本研究提出的ECG混合特征比傳統(tǒng)的ECG單維度特征擁有更高的識別率。第二步,針對人群數(shù)據(jù)龐大時,數(shù)據(jù)訓練的時間開銷大的問題,本研究基于上述ECG混合特征,提出新的LDA的算法(LDA Based On Multiple Features,LOMF),LOMF算法包含了ECG信號的預處理、子塊劃分和分塊訓練。并利用MapReduce分布式計算框架進行算法并行化,提出一種基于多維特征空間的二級檢索方式,在保證計算效率提高的同時,將識別率提升到一個更高的等級。文中實驗部分將ECG混合特征分別與Fiducial,Non-Fiducial兩種單維特征方法進行對比,發(fā)現(xiàn)在同一種識別算法中,ECG混合特征有更高的識別率。并且本文提出的基于多維特征空間二次檢索的LOMF算法比傳統(tǒng)的LDA,SVM等算法精度有7%-8%的提升,且LOMF最大的優(yōu)勢在于很好的契合于MapReduce并行框架,更適于互聯(lián)網(wǎng)這種數(shù)據(jù)集增長速度快的應用場景。
[Abstract]:In the past decade, biometric technology has been developed, it is a use of statistical methods and human physiological activity data to verify the identity of individuals. ECG electrocardiography (ECG) itself varies from person to person and cannot be duplicated in everyone. A large number of ECG signals are currently used in biometrics. The latest research has pointed out an unsolved problem of ECG biometrics: how to make full use of the ECG features to maintain the robustness of recognition under the circumstances of diverse application scenarios and large number of people. In order to solve the above problems, this paper firstly uses the traditional feature extraction method to combine the feature point based feature based (feature) and non-Fiducial based feature (Non-Fiducial based feature) to extract a hybrid feature extraction method which combines Fiducial and Non-fidicuial. In order to complete the modeling of multidimensional features of ECG signal. Fiducial features include the amplitude characteristics of ECG signals and the frequency spectrum features of ECG signals, including the waveform shapes of ECG electrocardiograms. Then the two kinds of features are mixed and unified modeling. It is proved that the ECG hybrid feature proposed in this paper has a higher recognition rate than the traditional ECG one-dimensional feature in the diverse scenarios. The second step is to solve the problem that the time cost of data training is large when the crowd data is large. Based on the mixed characteristics of ECG mentioned above, a new LDA algorithm named LDA Based On Multiple Features-LOMF algorithm is proposed, which includes the preprocessing of ECG signal, subblock partition and block training. The algorithm is parallelized by using MapReduce distributed computing framework, and a two-level retrieval method based on multidimensional feature space is proposed, which can improve the efficiency of computation and raise the recognition rate to a higher level. In the experiment part, we compare the mixed features of ECG with those of Fiducial Non-Fiducial and find that the mixed feature of ECG has higher recognition rate in the same recognition algorithm. Moreover, the proposed LOMF algorithm based on multidimensional feature space quadratic retrieval has 7- 8% higher accuracy than the traditional LDA-SVM algorithm, and the biggest advantage of LOMF is that it fits well with the MapReduce parallel framework. More suitable for the Internet, such as the rapid growth of data sets application scenarios.
【學位授予單位】:華中科技大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前2條
1 李玉榕;項國波;;一種基于馬氏距離的線性判別分析分類算法[J];計算機仿真;2006年08期
2 陳伏兵;陳秀宏;張生亮;楊靜宇;;基于模塊2DPCA的人臉識別方法[J];中國圖象圖形學報;2006年04期
,本文編號:1807988
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1807988.html
最近更新
教材專著