基于SVM的復(fù)雜背景條碼檢測(cè)算法研究
本文選題:條形碼 + 機(jī)器學(xué)習(xí) ; 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:隨著物聯(lián)網(wǎng)技術(shù)的崛起,條形碼技術(shù)也在我們的生活中得到了越來(lái)越廣泛的應(yīng)用,大到物流運(yùn)輸、倉(cāng)儲(chǔ)管理,小到手機(jī)支付、數(shù)據(jù)下載,條碼技術(shù)正與我們的生活日益息息相關(guān),而實(shí)現(xiàn)復(fù)雜背景下的條碼的快速檢測(cè),將進(jìn)一步挖掘條碼的潛力,為我們的日常生活創(chuàng)造更多的財(cái)富和便捷。本文針對(duì)現(xiàn)有的條碼定位算法,指出了它們共同存在的一些問(wèn)題:首先,復(fù)雜的背景對(duì)條碼的識(shí)別存在一定的干擾,如表格、文字等紋理易與條碼混淆;其次,由于不同的條碼具有不同的編碼格式和紋理,所以不能同時(shí)識(shí)別圖片中多種碼制的條碼。所以本文提出了一種基于支持向量機(jī)的條碼定位算法,其過(guò)程如下:首先,手工制作條碼圖像的樣本,其中正樣本要包含盡可能高比例的條碼區(qū)域,負(fù)樣本需要包含各種復(fù)雜的背景;其次,使用改進(jìn)的局部二值模式(LBP)提取條碼樣本圖像的特征,進(jìn)行訓(xùn)練,輸出分類器;再者,采用合理步長(zhǎng)的滑動(dòng)窗口技術(shù)對(duì)圖像進(jìn)行掃描分塊,并且判斷這些圖像子塊所屬的分類;最后,聚集所有屬于條碼區(qū)的子塊,使用本文提出的算法,將連通的子塊進(jìn)行合并。實(shí)驗(yàn)證明,本文提出的條碼檢測(cè)算法在時(shí)間復(fù)雜度和定位準(zhǔn)確率上,都能得到一個(gè)較好的效果。
[Abstract]:With the rise of the Internet of things technology, barcode technology has also been more and more widely used in our life. The technology of logistics transportation, storage management, small to mobile payment, data downloading, bar code technology are increasingly closely related to our life, and the rapid detection of barcode in complex background will further excavate the potential of bar code. In order to create more wealth and convenience for our daily life, this paper points out some problems that exist in the existing barcode location algorithm. First, the complex background has some interference to the identification of bar code, such as the form, the text and other textures, which are easily confused with the bar code; secondly, because different bar codes have different codes. Therefore, a bar code location algorithm based on support vector machine is proposed in this paper. The process is as follows: first, the sample of the bar code image is made by hand, in which the positive sample contains as high as possible bar code area, and the negative sample needs to contain a variety of complex background. Secondly, we use the improved local two value model (LBP) to extract the features of the bar code sample image, train and output the classifier. Furthermore, the image is scanned by the sliding window technique with reasonable step length, and the classification of these sub blocks is judged. Finally, all the sub blocks belonging to the bar code area are gathered, and the algorithm proposed in this paper is used. It is proved that the bar code detection algorithm proposed in this paper can get a better effect on the time complexity and the location accuracy.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 纏剛;;一維條碼在生產(chǎn)物流中的應(yīng)用與思考[J];經(jīng)營(yíng)管理者;2016年12期
2 翁迅;孫壯志;;基于形態(tài)學(xué)處理算法的條煙復(fù)核技術(shù)[J];煙草科技;2015年09期
3 藍(lán)杰;張浩然;;基于BP神經(jīng)網(wǎng)絡(luò)二維碼區(qū)域提取[J];微型機(jī)與應(yīng)用;2015年01期
4 邢宏珍;何銀平;陳雷;;一維條碼在信息系統(tǒng)中的生成與采集[J];電子制作;2014年10期
5 王新國(guó);;現(xiàn)代倉(cāng)儲(chǔ)管理中條形碼技術(shù)的運(yùn)用[J];網(wǎng)絡(luò)安全技術(shù)與應(yīng)用;2014年01期
6 熊川;嵇建波;;基于CCD的二維條形碼檢測(cè)系統(tǒng)[J];電訊技術(shù);2012年10期
7 胡運(yùn)紅;;支持向量機(jī)的研究與應(yīng)用[J];運(yùn)城學(xué)院學(xué)報(bào);2012年02期
8 魏宋楊;;條碼檢測(cè)儀在條碼質(zhì)量檢測(cè)中的應(yīng)用[J];中國(guó)測(cè)試;2011年06期
9 姜炳旭;劉杰;孫可;;Sobel邊緣檢測(cè)的細(xì)化[J];沈陽(yáng)師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
10 鄧澤峰;熊有倫;黃小鵬;;圖像式一維條碼識(shí)別的三重編碼方法[J];光電工程;2010年03期
,本文編號(hào):1804717
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1804717.html