基于圖像分析的陜西蘋果葉片病害識(shí)別系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
本文選題:斑點(diǎn)落葉病 + 花葉病 ; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文
【摘要】:隨著蘋果種植面積的逐漸增大,果樹病害種類隨之增多,在某種程度上就有可能導(dǎo)致蘋果產(chǎn)成率的降低,從而會(huì)影響到果農(nóng)的經(jīng)濟(jì)收益。為解決此問題,實(shí)驗(yàn)利用目前比較成熟的圖像處理技術(shù)和自動(dòng)識(shí)別技術(shù)來實(shí)現(xiàn)陜西關(guān)中地區(qū)蘋果葉片各種病害的識(shí)別。本文介紹利用圖像處理技術(shù)自動(dòng)檢測(cè)和識(shí)別蘋果葉片病害的方法,優(yōu)化病害圖像預(yù)處理算法,并針對(duì)圖像分割及模式識(shí)別部分算法開展研究。為避免在圖像處理過程中受葉片背景影響,采用基于灰度形態(tài)學(xué)圖像平滑方法。通過比較不同的圖像分割算法,對(duì)分割后得到的病斑或病斑輪廓進(jìn)行特征提取,找出最能代表病斑特征的數(shù)據(jù),然后利用模式識(shí)別的方法來識(shí)別蘋果葉片病斑的種類和名稱。從病害的種類和性質(zhì)上來說,斑點(diǎn)落葉病、銹病、花葉病是陜西關(guān)中區(qū)域較為普遍的果樹病害,因此本文以此為研究對(duì)象,分析并提取其特征參數(shù),同時(shí),設(shè)計(jì)相應(yīng)的蘋果葉片病害識(shí)別系統(tǒng)。本課題內(nèi)容主要包括以下幾點(diǎn):(1)收集蘋果葉片斑點(diǎn)落葉病、銹病、花葉病3種病害圖像,并對(duì)所有的病害圖像進(jìn)行圖像增強(qiáng)、去噪等預(yù)處理操作。(2)對(duì)預(yù)處理后的圖像進(jìn)行圖像分割操作,從多種蘋果葉片圖像中分離病斑圖像,并提取出不同病斑的相關(guān)特征參數(shù)。(3)通過基于決策理論的模式識(shí)別方法對(duì)3種蘋果葉片病害圖像進(jìn)行較為準(zhǔn)確的識(shí)別。(4)設(shè)計(jì)蘋果葉片病害識(shí)別系統(tǒng)。本文設(shè)計(jì)出一種基于MATLAB的蘋果葉片病害識(shí)別系統(tǒng),能夠應(yīng)用于生產(chǎn)實(shí)踐中,使蘋果葉片病害識(shí)別技術(shù)較好地服務(wù)于廣大果農(nóng)。
[Abstract]:With the increase of apple planting area, the variety of fruit diseases will increase, which may lead to the decrease of apple yield to some extent, which will affect the economic benefits of fruit farmers. In order to solve this problem, the current mature image processing technology and automatic recognition technology are used to realize the identification of apple leaf diseases in Guanzhong area of Shaanxi Province. In this paper, the method of automatically detecting and recognizing apple leaf diseases by image processing technology is introduced, and the image preprocessing algorithm is optimized, and some algorithms of image segmentation and pattern recognition are studied. In order to avoid the influence of leaf background in image processing, a grayscale morphological image smoothing method is adopted. By comparing different image segmentation algorithms, the feature extraction of the disease-spot or disease-spot contour was carried out, and the most representative data was found, and then the type and name of the disease spot in apple leaf was identified by pattern recognition. As far as the species and properties of the disease are concerned, spot leaf disease, rust disease and mosaic disease are common diseases of fruit trees in Guanzhong region of Shaanxi Province. Therefore, this paper takes this disease as the research object, analyzes and extracts its characteristic parameters, at the same time, The corresponding apple leaf disease recognition system was designed. The main contents of this paper include the following points: 1) collect the three disease images of apple leaf spot, rust and mosaic, and enhance all the disease images. Pre-processing operations such as de-noising. 2) segmenting images after preprocessing and separating diseased images from a variety of apple leaf images. The relative characteristic parameters of different disease spots were extracted. (3) the apple leaf disease recognition system was designed by using the pattern recognition method based on the decision theory to identify the three apple leaf disease images accurately. In this paper, an apple leaf disease identification system based on MATLAB is designed, which can be applied to the production practice and make the apple leaf disease identification technology better serve for the majority of fruit farmers.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S436.611;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱昊;;基于MATLAB圖像增強(qiáng)技術(shù)研究[J];信息與電腦(理論版);2015年09期
2 彭紅星;鄒湘軍;陳琰;楊磊;熊俊濤;陳燕;;基于演化算法的水果圖像分割[J];農(nóng)業(yè)工程學(xué)報(bào);2014年18期
3 王獻(xiàn)鋒;張善文;王震;張強(qiáng);;基于葉片圖像和環(huán)境信息的黃瓜病害識(shí)別方法[J];農(nóng)業(yè)工程學(xué)報(bào);2014年14期
4 王琳;陳楚;吳正鵬;;歷史航片特殊框標(biāo)的自動(dòng)內(nèi)定向算法[J];測(cè)繪科學(xué);2014年12期
5 錢建平;李明;楊信廷;吳保國(guó);張勇;王衍安;;基于雙側(cè)圖像識(shí)別的單株蘋果樹產(chǎn)量估測(cè)模型[J];農(nóng)業(yè)工程學(xué)報(bào);2013年11期
6 刁智華;王歡;宋寅卯;王云鵬;;復(fù)雜背景下棉花病葉害螨圖像分割方法[J];農(nóng)業(yè)工程學(xué)報(bào);2013年05期
7 關(guān)雪梅;;基于空域的圖像增強(qiáng)技術(shù)研究[J];赤峰學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年08期
8 鄧?yán)^忠;李敏;袁之報(bào);金濟(jì);黃華盛;;基于圖像識(shí)別的小麥腥黑穗病害特征提取與分類[J];農(nóng)業(yè)工程學(xué)報(bào);2012年03期
9 馬時(shí)亮;馬群;史國(guó)清;;基于MATLAB的激光光斑圖像處理算法[J];工具技術(shù);2011年08期
10 張華;展曉凱;;基于VC++的數(shù)字圖像處理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];濰坊學(xué)院學(xué)報(bào);2011年02期
相關(guān)碩士學(xué)位論文 前2條
1 畢傲睿;蘋果葉子病害圖像識(shí)別系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安建筑科技大學(xué);2014年
2 李宗儒;基于圖像分析的蘋果病害識(shí)別技術(shù)研究[D];西北農(nóng)林科技大學(xué);2010年
,本文編號(hào):1778799
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1778799.html