天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

煙花算法優(yōu)化的軟子空間MR圖像聚類算法

發(fā)布時(shí)間:2018-04-19 16:17

  本文選題:煙花算法 + 軟子空間聚類; 參考:《軟件學(xué)報(bào)》2017年11期


【摘要】:現(xiàn)有的軟子空間聚類算法在分割MR圖像時(shí)易受隨機(jī)噪聲的影響,而且算法因依賴于初始聚類中心的選擇而容易陷入局部最優(yōu),導(dǎo)致分割效果不理想.針對(duì)這一問(wèn)題,提出一種基于煙花算法的軟子空間MR圖像聚類算法.算法首先設(shè)計(jì)一個(gè)結(jié)合界約束與噪聲聚類的目標(biāo)函數(shù),彌補(bǔ)現(xiàn)有算法對(duì)噪聲數(shù)據(jù)敏感的缺陷,并提出一種隸屬度計(jì)算方法,快速、準(zhǔn)確地尋找簇類所在子空間;然后,在聚類過(guò)程中引入自適應(yīng)煙花算法,有效地平衡局部與全局搜索,彌補(bǔ)現(xiàn)有算法容易陷入局部最優(yōu)的不足.EWKM,FWKM,FSC,LAC算法在UCI數(shù)據(jù)集、人工合成圖像、Berkeley圖像數(shù)據(jù)集以及臨床乳腺M(fèi)R圖像、腦部MR圖像上的聚類結(jié)果表明,所提出的算法不僅在UCI數(shù)據(jù)集上能夠取得較好的結(jié)果,而且對(duì)圖像聚類也具有較好的抗噪性能,尤其是對(duì)MR圖像的聚類具有較高的精度和魯棒性,能夠較為有效地實(shí)現(xiàn)MR圖像的分割.
[Abstract]:The existing soft subspace clustering algorithms are susceptible to random noise in the segmentation of Mr images, and the algorithm is prone to fall into local optimum because of its dependence on the selection of initial clustering centers, which leads to unsatisfactory segmentation results.To solve this problem, a soft subspace Mr image clustering algorithm based on fireworks algorithm is proposed.The algorithm first designs an objective function combining bound constraints and noise clustering to make up for the shortcomings of the existing algorithms which are sensitive to noise data, and proposes a method for calculating membership degree, which can quickly and accurately find the subspace where the cluster is located.In the process of clustering, adaptive fireworks algorithm is introduced to balance the local and global search effectively, to make up for the deficiency of the existing algorithms. EWKM / FWKMU / FSCSC-LAC algorithm is applied to UCI data sets, artificial synthetic images, Berkeley image datasets and clinical mammary Mr images.The clustering results on brain Mr images show that the proposed algorithm can not only obtain better results on UCI datasets, but also have a good anti-noise performance for image clustering.Especially, it has high accuracy and robustness to the clustering of Mr images, and it can effectively realize the segmentation of Mr images.
【作者單位】: 陜西師范大學(xué)計(jì)算機(jī)科學(xué)學(xué)院;中國(guó)科學(xué)院深圳先進(jìn)技術(shù)研究院生物醫(yī)學(xué)與健康工程研究所;
【分類號(hào)】:TP18;TP391.41

【相似文獻(xiàn)】

相關(guān)會(huì)議論文 前10條

1 鄧德茂;孟悛非;陳應(yīng)明;周春香;高振華;;軟組織炎性肌纖維母細(xì)胞瘤的MR表現(xiàn)與手術(shù)病理對(duì)照分析[A];中華醫(yī)學(xué)會(huì)第十三屆全國(guó)放射學(xué)大會(huì)論文匯編(上冊(cè))[C];2006年

2 黃硯玲;;有癥狀的顳下頜關(guān)節(jié)紊亂病增強(qiáng)前后MR研究[A];中華醫(yī)學(xué)會(huì)第十三屆全國(guó)放射學(xué)大會(huì)論文匯編(下冊(cè))[C];2006年

3 王加偉;徐雷鳴;張敏鳴;;腮腺基底細(xì)胞腺瘤MR特征[A];2013年浙江省放射學(xué)學(xué)術(shù)年會(huì)論文集[C];2013年

4 郭曉東;陳俊杰;蔣春景;孫志南;黃益平;徐勝;胡東來(lái);陳仲美;;應(yīng)用MR三維重建技術(shù)探討先天性直腸肛門(mén)畸形的診斷和治療的臨床意義[A];2013年浙江省醫(yī)學(xué)會(huì)小兒外科學(xué)學(xué)術(shù)年會(huì)暨分會(huì)成立30周年慶典論文匯編[C];2013年

5 周建軍;;動(dòng)態(tài)增強(qiáng)MR在節(jié)細(xì)胞神經(jīng)瘤診斷中的應(yīng)用[A];中華醫(yī)學(xué)會(huì)第十三屆全國(guó)放射學(xué)大會(huì)論文匯編(下冊(cè))[C];2006年

6 臧樂(lè)樂(lè);潘建基;張瑜;洪金省;姚逸琦;鄒長(zhǎng)h,

本文編號(hào):1773813


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1773813.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7406d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com