基于異構(gòu)信息網(wǎng)絡(luò)聚類的APP推薦算法研究
本文選題:異構(gòu)信息網(wǎng)絡(luò) + 排序; 參考:《浙江大學(xué)》2016年碩士論文
【摘要】:移動(dòng)應(yīng)用(Mobile Application, APP)市場(chǎng)采用推薦技術(shù)將APP推薦給不同的用戶,以此幫助用戶從海量的APP中發(fā)現(xiàn)感興趣的內(nèi)容。但是由于APP所處領(lǐng)域的限制,APP推薦存在一系列的問題,例如APP使用分布容易出現(xiàn)重頭和長(zhǎng)尾現(xiàn)象、數(shù)據(jù)稀疏問題、冷啟動(dòng)問題等。其中,重頭和長(zhǎng)尾現(xiàn)象的出現(xiàn)不利于APP領(lǐng)域的發(fā)展,數(shù)據(jù)稀疏問題則限制了推薦算法的效率,而且隨著APP數(shù)量的增長(zhǎng),這些問題將日益突出。Netflix競(jìng)賽的出現(xiàn)在很大程度上推動(dòng)了推薦領(lǐng)域的發(fā)展,但是APP推薦算法研究還不成熟。目前移動(dòng)應(yīng)用市場(chǎng)APP推薦算法主要集中在關(guān)聯(lián)推薦、熱門推薦以及新品推薦等,這些傳統(tǒng)的推薦方法沒有從根本上解決APP推薦面臨的問題。隨著APP市場(chǎng)的日益完善,APP市場(chǎng)將擁有更加完備的APP信息以及用戶信息,如何利用這些信息幫助解決APP推薦面臨的一系列問題變得十分重要。針對(duì)APP數(shù)據(jù)集特點(diǎn),本文提出將排序方法、聚類技術(shù)與推薦算法相結(jié)合,共同挖掘APP多維度文本數(shù)據(jù)中蘊(yùn)藏的關(guān)系信息,在此基礎(chǔ)上開展基于異構(gòu)信息網(wǎng)絡(luò)聚類的APP推薦算法研究。第一,構(gòu)造多維度文本組成的APP信息網(wǎng)絡(luò)模型,包括用戶、APP、描述文本、發(fā)布者信息以及分類信息等。第二,通過兩種排序算法獲取附屬類型對(duì)象的排序分布。第三,在排序分布的基礎(chǔ)上建立一個(gè)針對(duì)中心類型的混合概率生成模型,使用EM算法估計(jì)參數(shù)的最優(yōu)值,然后依據(jù)貝葉斯理論獲得對(duì)象的后驗(yàn)概率,根據(jù)對(duì)象的聚類分布重新劃分類簇。第四,根據(jù)APP以及用戶聚類結(jié)果開展兩種不同的協(xié)同過濾算法,即基于偽評(píng)分的IBCF (Iterm-Based Collaborative Filtering)算法以及基于時(shí)間衰退的UBCF(User-Based Collaborative Filtering)算法。本文采用360手機(jī)助手應(yīng)用市場(chǎng)中的數(shù)據(jù)集進(jìn)行實(shí)驗(yàn)分析,實(shí)驗(yàn)結(jié)果表明本文提出的APP推薦算法能夠增強(qiáng)APP推薦的實(shí)際效果。
[Abstract]:Mobile application (Mobile Application APP) market recommended by APP technology will be recommended to different users, to help users find content of interest from the mass of APP. But because of the limitation of APP, APP recommended a series of problems, such as the use of APP distribution to head and tail phenomenon, data the sparsity, cold start problem. The emergence of heavy head and long tail phenomenon is not conducive to the development of APP, the data sparseness problem is limited by the efficiency of the algorithm, and with the increase in the number of APP, these problems will appear increasingly prominent.Netflix competition to promote development of the recommended field to a great extent, but APP research on recommendation algorithm is not mature. At present, the mobile application market APP recommendation algorithm mainly focus on the related recommendations, recommendations and new products, recommend these traditional methods not fundamentally To solve the problem. With the APP recommended APP market is improving, the APP market will have a more complete APP information and user information, how to use these information to help solve a series of problems facing APP recommendation becomes very important. According to the APP data set, this paper presents the ranking method, combining clustering technique and recommendation the common information mining algorithm, the relationship is APP multi dimension text data, on the basis of research on clustering heterogeneous information network APP recommendation algorithm based on APP. First, the information network model, construct multi dimension text including user, APP, description of the text, the publisher information and classification information. Second, get sort of distribution the affiliated type object through two kinds of sorting algorithms. Third, based on the distribution of the order for the establishment of a generation model of mixed probability center type, using the EM algorithm. Optimal values of the parameters, then the probability on the basis of Bias theory to obtain the object, based on the object clustering distribution re divided clusters. Fourth, according to APP and user clustering results carried out two kinds of collaborative filtering algorithm, which is based on the pseudo score (Iterm-Based Collaborative IBCF Filtering) algorithm and UBCF based on User-Based (time of recession Collaborative Filtering) algorithm. This paper uses the 360 mobile phone assistant application market data sets were analyzed, the experimental results show that the proposed APP recommendation algorithm can enhance the actual effect of the APP recommendation.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TP391.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐義峰;徐云青;劉曉平;;一種基于時(shí)間序列性的推薦算法[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2006年10期
2 余小鵬;;一種基于多層關(guān)聯(lián)規(guī)則的推薦算法研究[J];計(jì)算機(jī)應(yīng)用;2007年06期
3 張海玉;劉志都;楊彩;賈松浩;;基于頁(yè)面聚類的推薦算法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用與軟件;2008年09期
4 張立燕;;一種基于用戶事務(wù)模式的推薦算法[J];福建電腦;2009年03期
5 王晗;夏自謙;;基于蟻群算法和瀏覽路徑的推薦算法研究[J];中國(guó)科技信息;2009年07期
6 周珊丹;周興社;王海鵬;倪紅波;張桂英;苗強(qiáng);;智能博物館環(huán)境下的個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2010年19期
7 王文;;個(gè)性化推薦算法研究[J];電腦知識(shí)與技術(shù);2010年16期
8 張愷;秦亮曦;寧朝波;李文閣;;改進(jìn)評(píng)價(jià)估計(jì)的混合推薦算法研究[J];微計(jì)算機(jī)信息;2010年36期
9 夏秀峰;代沁;叢麗暉;;用戶顯意識(shí)下的多重態(tài)度個(gè)性化推薦算法[J];計(jì)算機(jī)工程與應(yīng)用;2011年16期
10 楊博;趙鵬飛;;推薦算法綜述[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
相關(guān)會(huì)議論文 前10條
1 王韜丞;羅喜軍;杜小勇;;基于層次的推薦:一種新的個(gè)性化推薦算法[A];第二十四屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2007年
2 唐燦;;基于模糊用戶心理模式的個(gè)性化推薦算法[A];2008年計(jì)算機(jī)應(yīng)用技術(shù)交流會(huì)論文集[C];2008年
3 秦國(guó);杜小勇;;基于用戶層次信息的協(xié)同推薦算法[A];第二十一屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(技術(shù)報(bào)告篇)[C];2004年
4 周玉妮;鄭會(huì)頌;;基于瀏覽路徑選擇的蟻群推薦算法:用于移動(dòng)商務(wù)個(gè)性化推薦系統(tǒng)[A];社會(huì)經(jīng)濟(jì)發(fā)展轉(zhuǎn)型與系統(tǒng)工程——中國(guó)系統(tǒng)工程學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 蘇日啟;胡皓;汪秉宏;;基于網(wǎng)絡(luò)的含時(shí)推薦算法[A];第五屆全國(guó)復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文(摘要)匯集[C];2009年
6 梁莘q,
本文編號(hào):1750703
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1750703.html