個(gè)人征信系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)
本文選題:互聯(lián)網(wǎng)金融 切入點(diǎn):信用風(fēng)險(xiǎn) 出處:《天津大學(xué)》2016年碩士論文
【摘要】:隨著互聯(lián)金融的飛速發(fā)展,不少企業(yè)都開始由傳統(tǒng)經(jīng)營模式轉(zhuǎn)變?yōu)榛ヂ?lián)網(wǎng)模式,互聯(lián)網(wǎng)金融的迅猛發(fā)展對傳統(tǒng)金融造成了很大的沖擊,與此同時(shí)我國網(wǎng)民數(shù)量越來越大,人們的傳統(tǒng)經(jīng)濟(jì)消費(fèi)行為逐漸開始互聯(lián)網(wǎng)化,發(fā)展至今人們的衣食住行都已經(jīng)密切和互聯(lián)網(wǎng)相掛鉤,這些行為在即時(shí)網(wǎng)絡(luò)領(lǐng)域產(chǎn)生大量的行為動(dòng)作數(shù)據(jù),使得互聯(lián)網(wǎng)本身成為了一個(gè)大型數(shù)據(jù)庫,這也就是大數(shù)據(jù)時(shí)代的到來,與之而來的就是數(shù)據(jù)倉庫和數(shù)據(jù)挖掘技術(shù)的興起,互聯(lián)網(wǎng)很好的利用了這一點(diǎn),研究人們在網(wǎng)上的消費(fèi)行為,從而不少新生的互聯(lián)網(wǎng)金融交易平臺涌現(xiàn)出來,像我們熟知的陸金所、宜人貸、e租寶、借貸寶等p2p交易平臺,然而這些交易平臺的注冊用戶數(shù)、交易額與成交數(shù)是如何從零數(shù)據(jù)做到大數(shù)據(jù)的值得推敲,像前不久剛發(fā)生的e租寶事件對互聯(lián)網(wǎng)金融整個(gè)行業(yè)都造成了信任危機(jī),還有更多的p2p平臺跑路、以及高管頻繁更換的問題都嚴(yán)重影響了人們對互聯(lián)網(wǎng)金融的評價(jià),面對種種互聯(lián)網(wǎng)金融問題與漏洞,我國目前還沒有詳細(xì)的政策和法律法規(guī)進(jìn)行監(jiān)管,整個(gè)社會(huì)的信用危機(jī)也是逐步上升,而個(gè)人征信目前還是由中國人民銀行來采集和管理,而企業(yè)的信用信息多由工商局和公安局管理和備案,信用信息采集來源單一和信用信息的不透明都導(dǎo)致人與人之間以及企業(yè)之間的信息不對稱,雙方了解不多,信任就難以建立,因此開發(fā)一個(gè)能夠提供個(gè)人和企業(yè)信用查詢的平臺意義重大。本課題主要研究個(gè)人信用信息數(shù)據(jù)的采集以及統(tǒng)計(jì)分析,目標(biāo)是借助數(shù)據(jù)倉庫與數(shù)據(jù)挖掘技術(shù)和即時(shí)網(wǎng)絡(luò)采集人們的網(wǎng)上交易行為[1],主要包含個(gè)人檔案基本信息、納稅信息,違反交通法規(guī)行為,水電煤繳費(fèi)信息、話費(fèi)、社保、信用卡、貸款信息、法院、公安局等相關(guān)機(jī)構(gòu)備案信息,通過數(shù)據(jù)分析與整理,輸出人們想要查詢的信用評級狀況,為社會(huì)創(chuàng)建一個(gè)公平公正誠信的個(gè)人征信查詢平臺,讓大家盡可能規(guī)避信用風(fēng)險(xiǎn)。
[Abstract]:With the rapid development of interconnected finance, many enterprises have begun to change from the traditional business model to the Internet mode. The rapid development of Internet finance has caused a great impact on the traditional finance. At the same time, the number of Internet users in our country is increasing. People's traditional economic consumption behavior has gradually begun to become Internet-based, and so far, people's clothing, food, housing and transportation have been closely linked to the Internet, and these behaviors have produced a large number of behavioral action data in the immediate field of the Internet. Make the Internet itself become a large database, this is the arrival of big data era, with the rise of data warehouse and data mining technology, the Internet has made good use of this point, By studying people's consumer behavior on the Internet, many new Internet financial trading platforms have sprung up, such as lufax, pleasant loaner, Zanbao and other P2P trading platforms known to us. However, the number of registered users of these trading platforms, How the transaction volume and the number of transactions are worth considering from zero to big data, such as the recent e-zubo incident has created a crisis of trust in the entire industry of Internet finance, and there are more P2P platforms running. And the frequent turnover of executives has seriously affected people's evaluation of Internet finance. In the face of all kinds of Internet financial problems and loopholes, China has not yet had detailed policies, laws and regulations to regulate them. The credit crisis of the whole society is also rising step by step. At present, personal credit information is collected and managed by the people's Bank of China, and the credit information of enterprises is mostly managed and put on record by the Commerce and Industry Bureau and the Public Security Bureau. The single source of credit information collection and the lack of transparency of credit information lead to asymmetric information between people and enterprises. If the two parties do not know much, it is difficult to establish trust. Therefore, it is of great significance to develop a platform that can provide personal and enterprise credit inquiry. This subject mainly studies the collection and statistical analysis of personal credit information data. The goal is to collect people's online transactions with the help of data warehouse and data mining technology and instant network [1], including basic information of personal files, tax information, violation of traffic laws and regulations, payment information of hydropower and coal, telephone charges, social security. Credit card, loan information, court, public security bureau and other relevant organizations put on record information, through data analysis and collation, output the credit rating status that people want to inquire about, and create a fair, just and honest personal credit inquiry platform for the society. Let everybody avoid credit risk as much as possible.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP311.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏革;;基于Web條件下數(shù)據(jù)挖掘算法與數(shù)據(jù)倉庫的接口設(shè)計(jì)與實(shí)現(xiàn)[J];電腦知識與技術(shù);2015年35期
2 金琦;;我國互聯(lián)網(wǎng)金融征信的主要問題及對策[J];時(shí)代金融;2015年35期
3 付艷茹;馬強(qiáng);;大數(shù)據(jù)背景下職務(wù)犯罪預(yù)防途徑和方法[J];中國人民公安大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2015年06期
4 徐啟昌;;中美征信市場比較[J];中國金融;2015年21期
5 馬欣欣;王波;朱本行;石婧;;各國征信業(yè)發(fā)展模式和我國信用體系建設(shè)探析[J];價(jià)值工程;2014年36期
6 胡春娜;;互聯(lián)網(wǎng)背景下的金融創(chuàng)新與風(fēng)險(xiǎn)防控[J];黑龍江金融;2014年06期
7 王博;何麗君;;國外個(gè)人征信體系比較及啟示[J];征信;2011年02期
8 楊莉國;歐付娜;劉慶海;程海濤;盧亮;;數(shù)據(jù)倉庫相關(guān)技術(shù)研究綜述[J];電腦知識與技術(shù);2011年10期
9 徐欣彥;;個(gè)人信用報(bào)告涉及的信息主體權(quán)利保護(hù)問題探究[J];征信;2011年01期
10 談儒勇;金晨珂;;我國個(gè)人征信體系建設(shè)的模式探討[J];征信;2010年01期
相關(guān)重要報(bào)紙文章 前1條
1 光采;;淘寶假貨門和芝麻信用,如果信用可以起更大作用[N];中國經(jīng)濟(jì)導(dǎo)報(bào);2015年
相關(guān)碩士學(xué)位論文 前6條
1 張敏;云計(jì)算環(huán)境下的并行數(shù)據(jù)挖掘策略研究[D];南京郵電大學(xué);2011年
2 張曜;山西郵政綜合信息管理系統(tǒng)中ETL的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2010年
3 張樹貴;商業(yè)銀行個(gè)人征信異構(gòu)信息整合的研究與應(yīng)用[D];廈門大學(xué);2008年
4 劉可佳;國際視域下的我國信用征信體系建設(shè)問題研究[D];哈爾濱工業(yè)大學(xué);2006年
5 曹志偉;支持ETL進(jìn)化的元數(shù)據(jù)管理與應(yīng)用[D];對外經(jīng)濟(jì)貿(mào)易大學(xué);2006年
6 劉磊;基于WEB的自助終端監(jiān)控管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];對外經(jīng)濟(jì)貿(mào)易大學(xué);2006年
,本文編號:1696427
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1696427.html