天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

3D打印氣管補(bǔ)片生物力學(xué)性能和細(xì)胞相容性研究

發(fā)布時(shí)間:2018-03-08 09:02

  本文選題:3D打印技術(shù) 切入點(diǎn):氣管補(bǔ)片 出處:《揚(yáng)州大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:氣管切除并端端吻合是當(dāng)前氣管重建的金標(biāo)準(zhǔn),但僅限于病變氣管段不超過(guò)成人總氣管長(zhǎng)度1/2或小兒1/3。當(dāng)病變氣管超過(guò)最大限度時(shí),進(jìn)行氣管重建有一定難度,因?yàn)闅夤懿粌H僅是一個(gè)簡(jiǎn)單的圓柱狀通氣管道,而是由復(fù)雜的多層結(jié)構(gòu)組成。氣管是由15-20個(gè)C形軟骨構(gòu)成,在氣管內(nèi)表面覆有纖毛上皮,外表面含有平滑肌、血管等結(jié)締組織。氣管軟骨維持著氣管圓柱狀形態(tài),防止氣管塌陷;而氣管內(nèi)表面呼吸上皮中的纖毛對(duì)氣管的清潔有著重要作用;氣管軟骨周圍的結(jié)締組織則保證了氣管的曲、伸以及收縮、擴(kuò)張等機(jī)械運(yùn)動(dòng)。因此,還沒(méi)有辦法完全重建這樣復(fù)雜的多層結(jié)構(gòu)以及完全模擬其功能。近年來(lái),3D打印技術(shù)的發(fā)展為氣管重建提供了新的思路。3D打印技術(shù)依靠計(jì)算機(jī)輔助成像,以廣泛使用的生物材料為打印介質(zhì),能夠快速、精確的復(fù)制和重建缺損組織或器官的復(fù)雜結(jié)構(gòu),因此在組織工程領(lǐng)域的應(yīng)用獲得廣泛關(guān)注。骨髓間充質(zhì)干細(xì)胞易分離培養(yǎng),且具有多向分化潛能,是氣管組織工程首選的種子細(xì)胞。本研究旨在以聚己內(nèi)酯為材料,利用3D打印技術(shù)打印出氣管補(bǔ)片,通過(guò)生物力學(xué)測(cè)試評(píng)估其生物力學(xué)性能并與骨髓間充質(zhì)干細(xì)胞共培養(yǎng)評(píng)估其細(xì)胞相容性,從而尋求合適的組織工程氣管支架材料。第一部分3D打印氣管補(bǔ)片的制備與生物力學(xué)性能檢測(cè)目的:利用3D打印技術(shù)將聚己內(nèi)酯打印成氣管補(bǔ)片并研究其生物力學(xué)性能。方法:1.3D打印氣管補(bǔ)片的制備;2.掃描電子顯微鏡觀察3D打印氣管補(bǔ)片超微結(jié)構(gòu);3.3D打印氣管補(bǔ)片的生物力學(xué)性能測(cè)試。結(jié)果:1.掃描電子顯微鏡圖(SEM)觀察到3D打印氣管補(bǔ)片擁有適宜的孔徑大小,孔徑為 300-500μm;2.生物力學(xué)性能測(cè)試結(jié)果證實(shí)3D打印氣管補(bǔ)片的最大應(yīng)力及彈性模量明顯優(yōu)于離體新鮮氣管,顯示其具有良好的生物力學(xué)性能。結(jié)論:1.利用3D打印技術(shù)將聚己內(nèi)酯制備成3D打印氣管補(bǔ)片;2.3D打印氣管補(bǔ)片具備合理的三維外形、適宜的孔徑大小;3.3D打印氣管補(bǔ)片具備良好的生物力學(xué)性能。第二部分 骨髓間充質(zhì)干細(xì)胞體外培養(yǎng)與3D打印氣管補(bǔ)片細(xì)胞相容性檢測(cè)目的:1.骨髓間充質(zhì)干細(xì)胞的體外培養(yǎng);2.檢測(cè)3D打印氣管補(bǔ)片與骨髓間充質(zhì)干細(xì)胞共培養(yǎng)的細(xì)胞相容性。方法:1.兔骨髓間充質(zhì)干細(xì)胞的獲取;2.兔骨髓間充質(zhì)干細(xì)胞的培養(yǎng);3.兔骨髓間充質(zhì)干細(xì)胞的鑒定;4.3D打印氣管補(bǔ)片與骨髓間充質(zhì)干細(xì)胞共培養(yǎng)的細(xì)胞相容性檢測(cè)。結(jié)果:1.通過(guò)全骨髓培養(yǎng)及貼壁純化法獲取的骨髓間充質(zhì)干細(xì)胞,培養(yǎng)至第3代細(xì)胞成簇貼壁生長(zhǎng),呈梭形、多角形,具有多向分化潛能,可以分化為軟骨細(xì)胞和脂肪細(xì)胞;2.與骨髓間充質(zhì)干細(xì)胞共培養(yǎng)后進(jìn)行細(xì)胞相容性檢測(cè)結(jié)果顯示3D打印氣管補(bǔ)片具有良好的細(xì)胞相容性。結(jié)論:3D打印氣管補(bǔ)片具備良好的細(xì)胞相容性,是一種具有開(kāi)發(fā)潛力的生物材料,可以用于組織工程氣管的體外構(gòu)建。
[Abstract]:Trachea resection with end-to-end anastomosis is the golden standard for trachea reconstruction, but it is only limited to the total trachea length of 1/2 in adults or 1 / 3 in children. Because the trachea is not just a simple cylindrical tube, but it's made up of a complex, multilayered structure. The trachea is composed of 15-20 C-shaped cartilage, covered with cilia epithelium on the surface of the trachea, and smooth muscle on the outer surface. Connective tissue such as blood vessels. The trachea cartilage maintains the cylindrical shape of the trachea and prevents the collapse of the trachea; the cilia in the respiratory epithelium on the surface of the trachea play an important role in the cleaning of the trachea; the connective tissue around the cartilage of the trachea ensures the curvature of the trachea. Extension and mechanical movements such as contraction and expansion. There is no way to completely reconstruct such a complex multilayer structure and to completely simulate its functions. In recent years, the development of 3D printing technology has provided a new way of thinking for trachea reconstruction. 3D printing technology relies on computer-aided imaging. Using widely used biomaterials as printing media, the complex structures of defective tissues or organs can be reproduced and reconstructed quickly and accurately, so their applications in the field of tissue engineering have attracted wide attention. Bone marrow mesenchymal stem cells are easily isolated and cultured. The aim of this study was to use polycaprolactone as the material, and to print the trachea patch with 3D printing technology. Its biomechanical properties were evaluated by biomechanical tests and its cytocompatibility was evaluated by co-culture with bone marrow mesenchymal stem cells. In order to find suitable tissue engineering tracheal scaffold materials. Part I preparation of 3D printed trachea patch and biomechanical properties test objective: to print polycaprolactone into trachea patch by 3D printing technology and study its biological force. Methods: 1. Preparation of 3D printed trachea patch. Observation of ultrastructure of 3D printed trachea patch by scanning electron microscope. 3. Biomechanical properties of 3D printed trachea patch. Results: 1. Scanning electron microscopy (SEM) observation of 3D trachea patch. The printed trachea patch has an appropriate aperture, The maximum stress and elastic modulus of 3D printed trachea patch were obviously superior to those of fresh trachea in vitro, the results of biomechanical test showed that the maximum stress and elastic modulus of 3D printed tracheal patch were obviously superior to those of fresh trachea in vitro. Conclusion: 1. Using 3D printing technology to prepare 3D printed trachea patch 2.3D printed trachea patch has a reasonable 3D shape. Suitable aperture size 3. 3D printed trachea patch has good biomechanical properties. Part 2: bone marrow mesenchymal stem cells cultured in vitro and 3D printed trachea patch cytocompatibility test objective: 1. Bone marrow mesenchymal stem cells. The cytocompatibility of 3D printed tracheobronchial patch and bone marrow mesenchymal stem cells was examined in vitro. Methods: 1. Acquisition of rabbit bone marrow mesenchymal stem cells 2. Culture of rabbit bone marrow mesenchymal stem cells 3. Fine mesenchymal stem cells of rabbit bone marrow. Cytocompatibility of 3D printed tracheal patch and bone marrow mesenchymal stem cells. Results: 1. Bone marrow mesenchymal stem cells obtained by whole bone marrow culture and adherent purification. In the third generation, the cells grew in clusters, fusiform and polygonal, and had the potential of multidirectional differentiation. It can differentiate into chondrocytes and adipocytes. After co-culture with bone marrow mesenchymal stem cells, the results of cytocompatibility test show that 3D printed trachea patch has good cytocompatibility. Good cell compatibility, It is a potential biomaterial for in vitro construction of tissue engineering trachea.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.73;R318.08

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張衛(wèi)東;章方彪;史宏?duì)N;韓石;葉鋼;孫飛;潘樞;劉星辰;;兔氣管黏膜上皮細(xì)胞片的制備[J];中華實(shí)驗(yàn)外科雜志;2014年11期

2 孫飛;潘樞;史宏?duì)N;章方彪;張衛(wèi)東;葉剛;劉星辰;;去污劑-聯(lián)合酶法行兔脫細(xì)胞組織工程氣管制備及性能評(píng)價(jià)[J];中華胸心血管外科雜志;2014年01期

3 孫艷麗;韓宏光;黃帶發(fā);賀順川;李予杰;;組織工程心臟瓣膜的構(gòu)建:現(xiàn)狀與前景[J];中國(guó)組織工程研究;2013年50期

4 Meimei Liu;Ning Liu;Ru Zang;Shang-Tian Yang;Yan Li;;Engineering stem cell niches in bioreactors[J];World Journal of Stem Cells;2013年04期

5 王月圓;楊萍;;3D打印技術(shù)及其發(fā)展趨勢(shì)[J];印刷雜志;2013年04期

6 Giorgia Totonelli;Panagiotis Maghsoudlou;Jonathan M Fishman;Giuseppe Orlando;Tahera Ansari;Paul Sibbons;Martin A Birchall;Agostino Pierro;Simon Eaton;Paolo De Coppi;;Esophageal tissue engineering:A new approach for esophageal replacement[J];World Journal of Gastroenterology;2012年47期

7 劉智任;陳冬磊;;聚己內(nèi)酯在組織工程中的應(yīng)用進(jìn)展[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2012年16期

8 趙銘;鄭啟新;王金光;王運(yùn)濤;郝杰;;PLGA仿生礦化對(duì)骨髓基質(zhì)干細(xì)胞黏附率的影響[J];國(guó)際生物醫(yī)學(xué)工程雜志;2006年01期

9 何建行,梁兆煜,楊運(yùn)有,韋兵,殷偉強(qiáng),溫曉暉,曾侖,鐘南山;同種異體氣管移植一例[J];中華外科雜志;2000年08期

10 張衛(wèi)東;史宏?duì)N;章方彪;譚榮邦;葉鋼;李廣宇;;兔骨髓間充質(zhì)干細(xì)胞體外培養(yǎng)方法的比較[J];中華實(shí)驗(yàn)外科雜志;2013年07期

,

本文編號(hào):1583235

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1583235.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c4c60***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com