天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 軟件論文 >

基于社交媒體的人類移動(dòng)時(shí)空規(guī)律研究

發(fā)布時(shí)間:2018-03-06 12:18

  本文選題:社交媒體 切入點(diǎn):數(shù)據(jù)挖掘 出處:《武漢大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:人類的活動(dòng)影響著交通、住房、商業(yè)、文化、基礎(chǔ)設(shè)施建設(shè)等與城市發(fā)展相關(guān)的方方面面,認(rèn)識(shí)并了解人類的活動(dòng)有助于城市的規(guī)劃與建設(shè)。近年來,基于位置的社交媒體平臺(tái)的發(fā)展,使人們的生活從現(xiàn)實(shí)世界延伸到虛擬世界中,人們?cè)诂F(xiàn)實(shí)世界中活動(dòng)時(shí)在部分時(shí)間里也同時(shí)活動(dòng)于虛擬世界里,位置和時(shí)間是聯(lián)系兩個(gè)世界的橋梁,人們?cè)谔摂M世界中活動(dòng)時(shí)留下了在現(xiàn)實(shí)世界所處的位置和時(shí)間信息。我們可以根據(jù)用戶在虛擬世界中留下時(shí)空信息研究人類在現(xiàn)實(shí)世界中的移動(dòng)規(guī)律。現(xiàn)實(shí)生活中的絕大多數(shù)人都有固定的生活節(jié)奏,因此其活動(dòng)都有一定的規(guī)律可循,然而由于生活的復(fù)雜性,人們?cè)谧裱?guī)律性活動(dòng)的同時(shí)也進(jìn)行了一些偶然性活動(dòng)。如何從偶然活動(dòng)中提取規(guī)律性活動(dòng)成為研究人類移動(dòng)規(guī)律的一個(gè)挑戰(zhàn)。本文基于社交媒體數(shù)據(jù),使用擴(kuò)展后的Markov模型研究了人類各類活動(dòng)所占比重,并分析了群體的活動(dòng)對(duì)城市人口流動(dòng)的反映。之后使用時(shí)空路徑理論提取了人類主要的活動(dòng)模式,并使用聚類算法根據(jù)活動(dòng)模式將用戶劃分到不同類別,研究了某些類別具有的時(shí)空特征。本文所做主要工作如下:1)基于Markov模型中狀態(tài)轉(zhuǎn)移思想,將時(shí)間維度加入到模型中來,研究人類在不同時(shí)段出現(xiàn)在不同位置以及在位置間移動(dòng)的可能性,包括:人類移動(dòng)提取,人類移動(dòng)位置出現(xiàn)探測(cè)、人類移動(dòng)位置轉(zhuǎn)換探測(cè),綜合預(yù)測(cè)算法設(shè)計(jì)。2)將個(gè)體移動(dòng)規(guī)律的探測(cè)方法應(yīng)用到群體移動(dòng)規(guī)律探測(cè)中,使用活動(dòng)位置出現(xiàn)概率反映城市人群在不同時(shí)刻的聚集狀況,使用活動(dòng)位置轉(zhuǎn)換概率反映人群在不同時(shí)刻的流動(dòng)情況。并使用ECharts動(dòng)態(tài)展示人群的動(dòng)態(tài)活動(dòng)情況。3)將時(shí)空路徑理論應(yīng)用到人類的長(zhǎng)期的主要活動(dòng)模式探索中來,研究人類移動(dòng)熱點(diǎn)的提取及聚類方法,時(shí)空路徑生成及路徑出現(xiàn)概率計(jì)算。使用參數(shù)組合生成了用戶多條時(shí)空路徑,獲得用戶更全面的活動(dòng)模式。將時(shí)空路徑在以24小時(shí)為Z軸的三維空間中展示以獲得人類于一天內(nèi)的移動(dòng)規(guī)律及移動(dòng)規(guī)律隨時(shí)間的變化。4)不同用戶的時(shí)空路徑具有不同的時(shí)空特征,代表了不同的活動(dòng)模式。設(shè)計(jì)時(shí)空路徑聚類方法,將不同時(shí)空特征的時(shí)空路徑劃分到不同類別,研究不同類別用戶具有的時(shí)間和空間上的規(guī)律。
[Abstract]:Human activities affect transportation, housing, commerce, culture, infrastructure construction and other related aspects of urban development, understanding and understanding of human activities contribute to urban planning and construction in recent years, With the development of location-based social media platform, people's life extends from the real world to the virtual world. Location and time are bridges between the two worlds, When people move in virtual world, they leave the information of their position and time in the real world. We can study the law of human movement in the real world according to the time and space information left by the user in the virtual world. Most of them have a fixed rhythm of life, So they all have certain rules to follow, but because of the complexity of life, While following regular activities, people have also carried out some accidental activities. How to extract regular activities from accidental activities has become a challenge in studying the laws of human mobility. This paper is based on social media data. The proportion of various human activities is studied by using the extended Markov model, and the reflection of group activities on urban population flow is analyzed. Then, the main human activity patterns are extracted by using space-time path theory. We use clustering algorithm to divide users into different categories according to their activity patterns, and study the space-time characteristics of some categories. The main work of this paper is as follows: 1) based on the idea of state transition in Markov model, the time dimension is added to the model. To study the possibility that human beings appear in different positions at different times and move between positions, including: human movement extraction, human mobile position detection, human mobile position conversion detection, The synthetic prediction algorithm design. 2) apply the detection method of individual movement law to the detection of group movement law, and use the probability of occurrence of activity position to reflect the gathering state of city crowd at different time. The temporal and spatial path theory is applied to the exploration of human's long term main activity pattern, using the probability of changing the activity position to reflect the movement of the crowd at different times, and using ECharts to show the dynamic activity of the crowd dynamically. The extraction and clustering methods of human mobile hot spots, the generation of space-time paths and the calculation of path occurrence probability are studied, and the multiple spatio-temporal paths of users are generated by using the combination of parameters. Obtain a more comprehensive user mode of activity. Display the space-time path in a three-dimensional space with the Z axis of 24 hours to obtain the movement laws of human beings within a day and their movement laws over time. 4) the space-time paths of different users. Have different space-time characteristics, The method of spatio-temporal path clustering is designed to divide the spatio-temporal paths of different spatio-temporal characteristics into different categories and to study the temporal and spatial laws of different types of users.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:C912.1;P208

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Alex Kantrowitz;文良;;2014年社交媒體的四大問題和預(yù)測(cè)[J];創(chuàng)新科技;2014年01期

2 朱星華;;從政府應(yīng)用與產(chǎn)業(yè)融合的視角看社交媒體的發(fā)展——以美國社交媒體的發(fā)展及政府對(duì)其的應(yīng)用為例[J];全球科技經(jīng)濟(jì)w,

本文編號(hào):1574806


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1574806.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d6acf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com