天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

馬鈴薯典型病害圖像自適應(yīng)特征融合與快速識(shí)別

發(fā)布時(shí)間:2018-03-01 18:02

  本文關(guān)鍵詞: 馬鈴薯典型病害 Hough變換 主成分分析 加權(quán)融合 支持向量機(jī) 出處:《農(nóng)業(yè)機(jī)械學(xué)報(bào)》2017年12期  論文類(lèi)型:期刊論文


【摘要】:針對(duì)自然條件下馬鈴薯典型病害區(qū)域定位和識(shí)別難的問(wèn)題,提出了一種馬鈴薯典型病害圖像的自適應(yīng)特征融合與快速識(shí)別方法。該方法利用K-means、Hough變換與超像素算法定位葉片,結(jié)合二維Otsu與形態(tài)學(xué)法分割病斑區(qū)域,通過(guò)病斑圖像顏色、形狀、紋理的自適應(yīng)主成分分析(PCA)特征加權(quán)融合,進(jìn)行支持向量機(jī)(SVM)病害識(shí)別。對(duì)3類(lèi)馬鈴薯典型病害圖像進(jìn)行識(shí)別試驗(yàn),結(jié)果表明:SVM識(shí)別模型下,自適應(yīng)特征融合方法相比PCA降維、特征排序選擇等傳統(tǒng)自適應(yīng)方法,平均識(shí)別率至少提高了1.8個(gè)百分點(diǎn);13個(gè)自適應(yīng)融合特征下,識(shí)別方法平均識(shí)別率為95.2%,比人工神經(jīng)網(wǎng)絡(luò)、貝葉斯分類(lèi)器提高了3.8個(gè)百分點(diǎn)和8.5個(gè)百分點(diǎn),運(yùn)行時(shí)間為0.600 s,比人工神經(jīng)網(wǎng)絡(luò)縮短3 s,可有效保證識(shí)別精度,大大加快了識(shí)別速度。
[Abstract]:An adaptive feature fusion and fast recognition method based on K-means-Hough transform and super-pixel algorithm is proposed to locate the leaves of potato typical diseases. Combining two-dimensional Otsu and morphological method to segment the disease spot region, the adaptive principal component analysis (PCA) method of image color, shape and texture is used for weighted fusion. Three kinds of typical potato disease images are identified by using support vector machine (SVM). The results show that the adaptive feature fusion method is better than the traditional adaptive methods such as PCA dimension reduction, feature ranking selection and so on. The average recognition rate is at least 1.8 percentage points higher than that of the artificial neural network, and the average recognition rate of 13 adaptive fusion features is 95.2 percentage points, which is 3.8 percentage points and 8.5 percentage points higher than that of the artificial neural network and Bayesian classifier. The operating time is 0.600 s, which is 3 s shorter than that of artificial neural network, which can effectively guarantee the recognition accuracy and greatly accelerate the recognition speed.
【作者單位】: 內(nèi)蒙古工業(yè)大學(xué)電力學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61661042) 內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2015MS0617)
【分類(lèi)號(hào)】:S435.32;TP391.41

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 盧弘斌;;馬鈴薯為什么會(huì)退化[J];農(nóng)業(yè)科學(xué)實(shí)驗(yàn);1978年07期

2 高志強(qiáng);王s,

本文編號(hào):1552980


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1552980.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cf412***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲专区一区中文字幕| 亚洲少妇一区二区三区懂色| 高潮少妇高潮久久精品99| 国产一区欧美一区二区| 免费特黄一级一区二区三区| 色小姐干香蕉在线综合网| 欧美日本精品视频在线观看| 最好看的人妻中文字幕| 久草视频在线视频在线观看| 久久精品亚洲精品国产欧美| 国产高清在线不卡一区| 亚洲婷婷开心色四房播播| 国产又粗又猛又长又黄视频| 高清不卡视频在线观看| 欧美六区视频在线观看| 亚洲香艳网久久五月婷婷| 男人和女人干逼的视频| 精品国产91亚洲一区二区三区 | 91偷拍与自偷拍精品| 欧美韩日在线观看一区| 久久午夜福利精品日韩| 富婆又大又白又丰满又紧又硬| 91精品国自产拍老熟女露脸| 福利新区一区二区人口| 欧洲日本亚洲一区二区| 国产午夜精品亚洲精品国产| 久久热在线视频免费观看| 国产成人精品一区二三区在线观看| 亚洲天堂精品1024| 亚洲精品福利入口在线| 伊人久久青草地综合婷婷| 精品一区二区三区不卡少妇av| 亚洲免费观看一区二区三区| 青青草草免费在线视频| 亚洲中文字幕免费人妻| 日韩成人动作片在线观看 | 国产又大又黄又粗又免费| 免费黄片视频美女一区| 国产欧美日韩精品一区二区| 欧美日韩国内一区二区| 亚洲视频在线观看免费中文字幕|