天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 軟件論文 >

馬鈴薯典型病害圖像自適應(yīng)特征融合與快速識(shí)別

發(fā)布時(shí)間:2018-03-01 18:02

  本文關(guān)鍵詞: 馬鈴薯典型病害 Hough變換 主成分分析 加權(quán)融合 支持向量機(jī) 出處:《農(nóng)業(yè)機(jī)械學(xué)報(bào)》2017年12期  論文類(lèi)型:期刊論文


【摘要】:針對(duì)自然條件下馬鈴薯典型病害區(qū)域定位和識(shí)別難的問(wèn)題,提出了一種馬鈴薯典型病害圖像的自適應(yīng)特征融合與快速識(shí)別方法。該方法利用K-means、Hough變換與超像素算法定位葉片,結(jié)合二維Otsu與形態(tài)學(xué)法分割病斑區(qū)域,通過(guò)病斑圖像顏色、形狀、紋理的自適應(yīng)主成分分析(PCA)特征加權(quán)融合,進(jìn)行支持向量機(jī)(SVM)病害識(shí)別。對(duì)3類(lèi)馬鈴薯典型病害圖像進(jìn)行識(shí)別試驗(yàn),結(jié)果表明:SVM識(shí)別模型下,自適應(yīng)特征融合方法相比PCA降維、特征排序選擇等傳統(tǒng)自適應(yīng)方法,平均識(shí)別率至少提高了1.8個(gè)百分點(diǎn);13個(gè)自適應(yīng)融合特征下,識(shí)別方法平均識(shí)別率為95.2%,比人工神經(jīng)網(wǎng)絡(luò)、貝葉斯分類(lèi)器提高了3.8個(gè)百分點(diǎn)和8.5個(gè)百分點(diǎn),運(yùn)行時(shí)間為0.600 s,比人工神經(jīng)網(wǎng)絡(luò)縮短3 s,可有效保證識(shí)別精度,大大加快了識(shí)別速度。
[Abstract]:An adaptive feature fusion and fast recognition method based on K-means-Hough transform and super-pixel algorithm is proposed to locate the leaves of potato typical diseases. Combining two-dimensional Otsu and morphological method to segment the disease spot region, the adaptive principal component analysis (PCA) method of image color, shape and texture is used for weighted fusion. Three kinds of typical potato disease images are identified by using support vector machine (SVM). The results show that the adaptive feature fusion method is better than the traditional adaptive methods such as PCA dimension reduction, feature ranking selection and so on. The average recognition rate is at least 1.8 percentage points higher than that of the artificial neural network, and the average recognition rate of 13 adaptive fusion features is 95.2 percentage points, which is 3.8 percentage points and 8.5 percentage points higher than that of the artificial neural network and Bayesian classifier. The operating time is 0.600 s, which is 3 s shorter than that of artificial neural network, which can effectively guarantee the recognition accuracy and greatly accelerate the recognition speed.
【作者單位】: 內(nèi)蒙古工業(yè)大學(xué)電力學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(61661042) 內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2015MS0617)
【分類(lèi)號(hào)】:S435.32;TP391.41

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 盧弘斌;;馬鈴薯為什么會(huì)退化[J];農(nóng)業(yè)科學(xué)實(shí)驗(yàn);1978年07期

2 高志強(qiáng);王s,

本文編號(hào):1552980


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1552980.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶cf412***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩精品区欧美在线一区| 国产高清视频一区不卡| 大香伊蕉欧美一区二区三区| 亚洲欧美国产精品一区二区| 91精品国产综合久久精品| 婷婷色香五月综合激激情| 久久经典一区二区三区| 欧美一区二区三区不卡高清视| 国产免费人成视频尤物| 久久99亚洲小姐精品综合| 国产精品亚洲欧美一区麻豆| 久久精品亚洲精品国产欧美| 天堂av一区一区一区| 国产一区日韩二区欧美| 久久99夜色精品噜噜亚洲av| 久久女同精品一区二区| 国产不卡视频一区在线| 欧洲一区二区三区蜜桃| 久久精品一区二区少妇| 99久久无色码中文字幕免费| 国产又粗又猛又大爽又黄| 国产又大又猛又粗又长又爽| 亚洲精品日韩欧美精品| 欧洲日本亚洲一区二区| 亚洲视频偷拍福利来袭| 国产精品亚洲综合天堂夜夜| 亚洲国产av一二三区| 国产一区二区三区香蕉av| 亚洲妇女作爱一区二区三区| 欧美成人黄色一区二区三区| 国产精品熟女乱色一区二区| 少妇人妻中出中文字幕| 成人三级视频在线观看不卡| 亚洲欧美日韩色图七区| 亚洲精品中文字幕欧美| 欧美一级黄片免费视频| 91亚洲精品亚洲国产| 国产欧美日产中文一区| 国产又大又黄又粗又免费| 国产日韩欧美专区一区| 偷拍洗澡一区二区三区|