基于人類(lèi)視覺(jué)系統(tǒng)的屏幕圖像質(zhì)量評(píng)價(jià)方法研究
本文關(guān)鍵詞: 圖像質(zhì)量評(píng)價(jià) 人類(lèi)視覺(jué)系統(tǒng) 屏幕圖像 梯度方向 邊緣模型 出處:《華僑大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著移動(dòng)互聯(lián)網(wǎng)、云計(jì)算以及物聯(lián)網(wǎng)等技術(shù)的快速發(fā)展,屏幕圖像獲得了越來(lái)越多的關(guān)注和應(yīng)用。與自然圖像不同,屏幕圖像既包含由計(jì)算機(jī)直接生成或渲染的非連續(xù)色調(diào)內(nèi)容,如文字、圖表和圖形等,又含有由攝像機(jī)采集得到的連續(xù)色調(diào)內(nèi)容,如自然場(chǎng)景圖片和視頻片段等。屏幕圖像在獲取、存儲(chǔ)、編碼、傳輸和顯示過(guò)程中會(huì)不可避免地引入各種類(lèi)型的失真從而導(dǎo)致圖像視覺(jué)效果降低。因此,如何準(zhǔn)確評(píng)價(jià)屏幕圖像質(zhì)量是屏幕圖像技術(shù)領(lǐng)域一個(gè)至關(guān)重要的問(wèn)題,F(xiàn)有的大部分圖像質(zhì)量評(píng)價(jià)算法和圖像質(zhì)量評(píng)價(jià)數(shù)據(jù)庫(kù)都是針對(duì)自然圖像而設(shè)計(jì)的,由于屏幕圖像與自然圖像的不同統(tǒng)計(jì)特性,他們并不能完全適用于屏幕圖像。因此,本篇論文根據(jù)人眼視覺(jué)特征和屏幕圖像特點(diǎn)系統(tǒng)探索了屏幕圖像質(zhì)量評(píng)價(jià)方法,包括基于梯度方向的屏幕圖像質(zhì)量評(píng)價(jià)方法、基于邊緣模型的屏幕圖像質(zhì)量評(píng)價(jià)方法、通用屏幕圖像質(zhì)量評(píng)價(jià)數(shù)據(jù)庫(kù)。具體如下:1、在分析了屏幕圖像與自然圖像梯度幅值的顯著差異和梯度方向與人類(lèi)視覺(jué)系統(tǒng)相關(guān)性的基礎(chǔ)上,設(shè)計(jì)了一種基于梯度方向的全參考型屏幕圖像質(zhì)量評(píng)價(jià)算法。該算法首先提出一種能夠有效捕獲屏幕圖像失真特性的梯度方向計(jì)算方法,然后計(jì)算參考和失真屏幕圖像的梯度方向相似度,進(jìn)而融合梯度幅值相似度以獲得最終的失真屏幕圖像質(zhì)量指標(biāo)。實(shí)驗(yàn)結(jié)果表明,提出的方法能夠有效準(zhǔn)確地評(píng)價(jià)屏幕圖像感知質(zhì)量。2、考慮到人眼視覺(jué)對(duì)于圖像邊緣比較敏感且屏幕圖像含有大量邊緣,提出了一種基于參數(shù)化邊緣模型的全參考型屏幕圖像質(zhì)量評(píng)價(jià)方法。該方法首先通過(guò)邊緣模型分別從參考和失真屏幕圖像中提取兩種顯著的邊緣屬性:邊緣對(duì)比度和邊緣寬度,然后分別計(jì)算參考和失真屏幕圖像的邊緣對(duì)比度相似度和邊緣寬度相似度,最后使用基于邊緣寬度的權(quán)重合并方法計(jì)算失真屏幕圖像質(zhì)量評(píng)價(jià)分?jǐn)?shù)。實(shí)驗(yàn)結(jié)果證明,所提方法與人類(lèi)視覺(jué)系統(tǒng)對(duì)屏幕圖像的主觀感知一致性較好。3、考慮到現(xiàn)有的最大屏幕圖像質(zhì)量評(píng)價(jià)數(shù)據(jù)庫(kù)存在參考圖像和失真類(lèi)型不夠全面的問(wèn)題,建立了一個(gè)目前最大的主觀屏幕圖像質(zhì)量評(píng)價(jià)數(shù)據(jù)庫(kù)SCID。根據(jù)屏幕圖像和其實(shí)際應(yīng)用場(chǎng)景特點(diǎn)選取了40張參考屏幕圖像,并使用9種常見(jiàn)的失真類(lèi)型生成1800張失真屏幕圖像。嚴(yán)格遵照國(guó)際標(biāo)準(zhǔn)采用雙刺激損傷測(cè)量法獲取失真屏幕圖像的主觀質(zhì)量評(píng)分,經(jīng)過(guò)分析與處理后得到每張失真屏幕圖像的MOS值作為感知質(zhì)量的真實(shí)值;谒鶚(gòu)建的SCID,我們深入評(píng)估了13種具有代表性的客觀圖像質(zhì)量評(píng)價(jià)模型,并進(jìn)行了詳盡分析。該數(shù)據(jù)庫(kù)將通過(guò)開(kāi)放共享作為屏幕圖像領(lǐng)域的一個(gè)重要數(shù)據(jù)庫(kù),對(duì)促進(jìn)屏幕圖像技術(shù)領(lǐng)域的研究工作具有重要意義。綜上所述,本文主要根據(jù)屏幕圖像特點(diǎn)和人眼視覺(jué)特性分析與探索屏幕圖像質(zhì)量評(píng)價(jià)方法,具有一定的創(chuàng)新性和挑戰(zhàn)性。本文的研究成果在一定程度上為基于人類(lèi)視覺(jué)系統(tǒng)的屏幕圖像技術(shù)開(kāi)拓了視野,具有重要的理論研究意義和實(shí)際應(yīng)用價(jià)值。
[Abstract]:With the rapid development of mobile Internet, cloud computing and networking technologies, the screen image gained more and more attention. Different from the natural image, non continuous tone, the screen image contains not only directly generated by the computer or rendering such as text, graphics and graphics, but also contains the content of continuous tone collected by the camera the natural scene, such as pictures and video clips. The screen image acquisition, storage, encoding, transmission and display process will inevitably introduce various types of distortion resulting image visual effect is reduced. Therefore, how to accurately evaluate the screen image quality is one of the most important technology in the field of screen image and image evaluation algorithm. The quality of most of the image quality evaluation is based on the existing database of natural images and design, because the screen images and natural images with different statistical characteristics And they are not fully suitable for the screen image. Therefore, this thesis explores the image quality evaluation method based on human visual characteristics of the screen and the screen image features of the system, including the screen image quality evaluation method based on the gradient direction, quality evaluation method of edge model based on screen image, general screen image quality evaluation database as follows. 1, based on the analysis of the significant differences between the screen image and natural image gradient amplitude and gradient direction and the correlation of the human visual system, an algorithm of full reference image quality assessment screen based on gradient direction design. The algorithm first proposed can effectively capture a screen image distortion gradient direction calculation method. Then calculate the gradient direction similarity reference and the distortion of screen image, and then the fusion gradient amplitude similarity in order to get lost really the final screen The image quality index. The experimental results show that the proposed method can effectively and accurately evaluate the perceived quality of the screen image of.2, taking into account the human visual system for image edge sensitive and the screen image contains a large number of edges, presents a screen full reference image quality assessment based on parametric edge model method. This method firstly edge model respectively. From the reference and distortion from two significant attributes: the width of the screen image edge edge contrast and edge, and then calculate the width of edge contrast similarity and edge similarity reference and distortion of the screen image, finally use the distortion of image quality evaluation score screen to calculate the weight combination method based on the width of the edge. The experimental results show that the proposed method with the human visual system to screen image perceived consistent.3, taking into account the existing maximum screen image quality The evaluation database has the reference image and the distortion type is not comprehensive, set up a current evaluation of subjective image quality database SCID. the largest screen according to the screen image and its application scene features selected 40 a reference screen image, and use the 9 common types of distortion generated 1800 distortion screen image in strict accordance with international standards. Double stimulation damage measurement method to obtain the subjective quality score distortion of the screen image, after analysis and processing after each screen image distortion MOS value as the perceived quality of the true value. The construction of SCID based on our in-depth evaluation of the 13 kinds of objective image quality evaluation of representative models, and analyzes in detail the. The database will share an important database as the screen image field through the open, is to promote the research work of the technical field of the screen image Important. To sum up, this paper mainly based on the analysis and exploration of image quality evaluation method of screen screen image features and features of human vision, with innovative and challenging. The research results of this paper to a certain extent for the screen images of the human visual system to develop a vision based research has important theoretical significance and practical application value.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何志蘭,崔杜武,莫毅;一種遠(yuǎn)程屏幕圖像實(shí)時(shí)傳輸方法[J];計(jì)算機(jī)應(yīng)用研究;2005年08期
2 吳棟淦;;兩種屏幕圖像捕獲方案的比較[J];機(jī)電技術(shù);2007年03期
3 董琴;;基于遠(yuǎn)程屏幕圖像實(shí)時(shí)抓取與傳輸方法的研究[J];電腦知識(shí)與技術(shù);2010年12期
4 孫亞;遠(yuǎn)程圖像傳輸及屏幕抓取的原理與實(shí)現(xiàn)[J];內(nèi)蒙古電大學(xué)刊;2003年01期
5 徐向陽(yáng);曹幫琴;;差異截圖法實(shí)現(xiàn)屏幕圖像快速傳輸[J];南陽(yáng)師范學(xué)院學(xué)報(bào);2007年09期
6 劉曉冬;;網(wǎng)絡(luò)教學(xué)中屏幕圖像的實(shí)時(shí)傳輸[J];科技信息;2007年05期
7 王志勇;屏幕圖像的抓取與縮放顯示[J];計(jì)算機(jī)時(shí)代;1998年03期
8 王曉日;吳維;慕曉冬;柯冰;;窄信道情況下遠(yuǎn)程屏幕圖像高倍壓縮傳輸方法[J];價(jià)值工程;2013年26期
9 黃國(guó)盛;一種高效的保存和恢復(fù)屏幕圖像的方法[J];計(jì)算機(jī)應(yīng)用;1995年06期
10 楊茂林;利用擴(kuò)展內(nèi)存截取屏幕圖像[J];計(jì)算機(jī)世界;1995年07期
相關(guān)重要報(bào)紙文章 前2條
1 成都 逸民;價(jià)雖廉 質(zhì)不差[N];電子報(bào);2006年
2 太原有線(xiàn)電視網(wǎng)絡(luò)中心 衛(wèi)明慧;EPG在機(jī)頂盒中的實(shí)現(xiàn)[N];山西科技報(bào);2009年
相關(guān)博士學(xué)位論文 前1條
1 楊光;基于大型科學(xué)儀器工作站的屏幕圖像識(shí)別與壓縮技術(shù)研究[D];吉林大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 陳華;計(jì)算機(jī)遠(yuǎn)程維護(hù)中的圖像通信[D];西安電子科技大學(xué);2002年
2 王海波;低帶寬環(huán)境下桌面共享協(xié)同設(shè)計(jì)的關(guān)鍵技術(shù)研究[D];上海交通大學(xué);2007年
3 金德光;網(wǎng)絡(luò)多媒體教學(xué)系統(tǒng)的研究與實(shí)現(xiàn)[D];山東大學(xué);2009年
4 劉宇;網(wǎng)絡(luò)多媒體教學(xué)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];重慶大學(xué);2006年
5 陳楊林;無(wú)投影多媒體網(wǎng)絡(luò)教學(xué)系統(tǒng)教師機(jī)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2009年
6 許煜;屏幕圖像光度檢測(cè)系統(tǒng)研究[D];浙江大學(xué);2010年
7 楊紅生;大型科學(xué)儀器工作站屏幕圖像遠(yuǎn)程共享技術(shù)的研究[D];吉林大學(xué);2008年
8 謝輝;交互式多媒體網(wǎng)絡(luò)教學(xué)系統(tǒng)的研究與實(shí)現(xiàn)[D];大連理工大學(xué);2006年
,本文編號(hào):1530908
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1530908.html