高速公路出入口運動車輛軌跡分層聚類算法
發(fā)布時間:2018-02-20 16:44
本文關鍵詞: 交通運輸系統(tǒng)工程 高速公路出入口 軌跡分析 改進Hausdorff距離 聚類算法 出處:《吉林大學學報(工學版)》2017年06期 論文類型:期刊論文
【摘要】:為了提高對高速公路出入口車輛運動行為的理解和分析水平,根據出入口車輛運動軌跡的時空特征,提出了一種運動軌跡層次聚類算法。結合出入口軌跡方向一致、長短不一的特點,提出采用改進Hausdorff距離來衡量軌跡間的相似性。建立了改進模糊C均值軌跡分層聚類算法,首先根據軌跡的空間幾何位置進行路徑聚類,然后根據車輛的速度信息對已有路徑聚類進一步聚類獲得具有時空區(qū)分度的最終結果。真實高速公路出入口的試驗結果表明:本文提出的軌跡聚類算法對于場景固定運動行為模式不僅具有較強的適用性,而且能夠保障聚類結果的準確性和可靠性。
[Abstract]:In order to improve the understanding and analysis of the movement behavior of vehicles at the entrance and exit of freeway, a hierarchical clustering algorithm of motion trajectory is proposed according to the temporal and spatial characteristics of the moving track of the vehicle at the entrance and exit, and the direction of the entry and exit trajectory is the same. An improved Hausdorff distance is proposed to measure the similarity of trajectories, and an improved fuzzy C-means trajectory clustering algorithm is established. Firstly, the path clustering is carried out according to the spatial geometric position of the trajectory. Then according to the speed information of the vehicle, the existing path clustering is further clustered to obtain the final result with space-time discrimination. The experimental results of the real freeway entrance and exit show that the trajectory clustering algorithm proposed in this paper is useful to the scene. The fixed motion behavior mode is not only applicable, Moreover, it can ensure the accuracy and reliability of clustering results.
【作者單位】: 同濟大學道路與交通工程教育部重點試驗室;
【基金】:“863”國家高技術研究發(fā)展計劃項目(2013AA12A206)
【分類號】:TP311.13;U491
,
本文編號:1519475
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1519475.html
最近更新
教材專著