天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于雙目視覺的機器人目標定位技術研究

發(fā)布時間:2018-02-15 21:25

  本文關鍵詞: 雙目視覺 立體匹配 Hopfield神經網(wǎng)絡 目標定位 三維重建 出處:《廣東工業(yè)大學》2017年碩士論文 論文類型:學位論文


【摘要】:機器視覺是機器人感知外界環(huán)境的一種重要手段,而深度信息是機器人利用機器視覺感知外界的一個重要信息。雙目視覺是機器視覺領域的一個分支,也是一種獲取深度信息的重要手段。雙目視覺通過在不同角度觀察同一目標,對產生的圖像進行特征提取、立體匹配和視差計算,并進行重建三維場景來獲取深度信息。雙目視覺涉及的主要內容有:圖像獲取、相機標定、特征提取、立體匹配和三維重建。其中,立體匹配是雙目視覺研究中的重點和難點。本文提出基于Hopfield神經網(wǎng)絡的立體匹配算法,利用雙目視覺,研究了機器人目標定位技術,并在此基礎上進行了基于雙目視覺的機器人目標定位實驗。首先,本文對國內外基于雙目視覺的機器人目標定位技術進行了深入研究,了解研究現(xiàn)狀,總結分析了基于雙目視覺的機器人目標定位技術中涉及的研究重點和難點;明確了本文的主要研究內容和研究工作。其次,研究了立體視覺基本原理,特別是雙目視覺理論。在分析比較雙目視覺系統(tǒng)原理的基礎上,本文采用基于平行光軸的雙目視覺系統(tǒng)作為機器人目標的定位的基本結構,并從幾何角度分析了目標深度與視差之間的關系,奠定了雙目視覺目標定位的理論基礎。再次,重點研究了雙目視覺目標定位涉及的關鍵技術,特別是坐標系統(tǒng)、相機模型、相機標定、雙目相機標定與校正、三維重建等技術;另外,重點研究了基于張正友法的相機標定技術,并采用該方法對本文實驗使用的相機進行標定。然后,深入研究了雙目立體匹配,在分析研究了雙目立體匹配基本原理、立體匹配約束、立體匹配難點和立體匹配算法的基礎上,利用能量最小化方法,提出一種基于Hopfield神經網(wǎng)絡的立體匹配算法;立體匹配中的極線約束、唯一性約束、平滑性約束和相似性約束引入到Hopfield神經網(wǎng)絡能量函數(shù)中,不斷更新神經元狀態(tài),從而最小化Hopfield神經網(wǎng)絡能量函數(shù),最終計算出視差圖。最后,在理論研究的基礎上,搭建了基于雙目視覺的機器人目標定位實驗平臺;在平臺上分別開展了相機標定、雙目相機標定、基于Hopfield神經網(wǎng)絡立體匹配和機器人目標定位等實驗,并進行誤差分析。在不斷實驗并分析誤差,改進算法的基礎上,完成了基于雙目視覺的機器人目標定位,達到了令人滿意的精度。
[Abstract]:Machine vision is an important means for robot to perceive the external environment, and depth information is an important information for robot to use machine vision to perceive external environment. Binocular vision is a branch of machine vision field. Binocular vision is also an important means of obtaining depth information. Binocular vision can extract features, stereo matching and parallax calculation of the generated image by observing the same object from different angles. The main contents of binocular vision are: image acquisition, camera calibration, feature extraction, stereo matching and 3D reconstruction. Stereo matching is an important and difficult point in binocular vision research. In this paper, a stereo matching algorithm based on Hopfield neural network is proposed. On this basis, the robot target localization experiment based on binocular vision is carried out. Firstly, this paper makes a deep research on the robot target location technology based on binocular vision at home and abroad, and understands the current situation of the research. This paper summarizes and analyzes the key points and difficulties involved in the robot target location technology based on binocular vision, clarifies the main research contents and research work in this paper. Secondly, the basic principle of stereo vision is studied. Especially the theory of binocular vision. On the basis of analyzing and comparing the principle of binocular vision system, this paper adopts the binocular vision system based on parallel optical axis as the basic structure of robot target localization. The relationship between target depth and parallax is analyzed from the angle of geometry, and the theoretical foundation of binocular visual target localization is established. Thirdly, the key technologies involved in binocular visual target localization, especially coordinate system and camera model, are studied emphatically. Camera calibration, binocular camera calibration and correction, 3D reconstruction, etc. In addition, the camera calibration technology based on Zhang Zhengyou method is studied, and the camera used in this experiment is calibrated by this method. The basic principle of binocular stereo matching, the constraint of stereo matching, the difficulty of stereo matching and the algorithm of stereo matching are analyzed, and the energy minimization method is used. A stereo matching algorithm based on Hopfield neural network is proposed, in which polar line constraint, uniqueness constraint, smoothness constraint and similarity constraint are introduced into the energy function of Hopfield neural network to update the neuron state. In order to minimize the energy function of Hopfield neural network, finally calculate the parallax map. Finally, based on the theoretical research, a robot target location experimental platform based on binocular vision is built, and the camera calibration is carried out on the platform. Binocular camera calibration, stereo matching based on Hopfield neural network and robot target positioning experiments, and error analysis. On the basis of continuous experiments and error analysis, improved algorithm, the robot target location based on binocular vision is completed. Satisfactory accuracy has been achieved.
【學位授予單位】:廣東工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41;TP242

【參考文獻】

相關期刊論文 前10條

1 馮亮;謝勁松;李根;霍慶立;;攝像機標定的原理與方法綜述[J];機械工程師;2016年01期

2 寧曉斐;胡波;趙磊;_澄鬧,

本文編號:1513912


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1513912.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶35a5e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com