基于數(shù)據(jù)挖掘的移動設(shè)備使用情況分析的研究
本文關(guān)鍵詞: 數(shù)據(jù)挖掘 K-means聚類算法 移動設(shè)備 Apriori關(guān)聯(lián)規(guī)則算法 出處:《內(nèi)蒙古大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,在互聯(lián)網(wǎng)的飛速發(fā)展下,手機移動設(shè)備也從3G通信時代進入現(xiàn)在的4G互聯(lián)時代。在2020年,我國預(yù)計將大規(guī)模運用5G移動通信技術(shù)。然而,當(dāng)今數(shù)據(jù)挖掘領(lǐng)域的一個熱點話題便是對移動應(yīng)用設(shè)備產(chǎn)生的豐富數(shù)據(jù)進行分析與挖掘。本篇論文將引入數(shù)據(jù)挖掘技術(shù)來研究移動設(shè)備的使用情況并進行分析,最終為移動設(shè)備的運營商提供一定的參考。本文的研究工作主要包括三部分:第一部分:對本實驗數(shù)據(jù)文件進行整合,對整合好的數(shù)據(jù)文件利用Excel進行整體的分析,從用戶基本特性、時間特性、手機品牌特性、地理位置特性、使用的手機App種類這幾方面進行研究,找到其中有價值的研究點。第二部分:從宏觀上,運用數(shù)據(jù)挖掘中的聚類算法對經(jīng)緯度數(shù)據(jù)進行聚類,通過使用Python語言編程來實現(xiàn)算法的功能并對聚類結(jié)果進行可視化。觀察聚類后的結(jié)果,可以看到呈現(xiàn)出的結(jié)果大致是一個中國地圖的形狀,并且在中國地圖的輪廓之外還存在一些較少的分布。重新設(shè)置k值對數(shù)據(jù)進行二次聚類,調(diào)用百度地圖的API接口將二次聚類結(jié)果的每一個簇的質(zhì)心數(shù)據(jù)進行圖形化顯示,并觀察移動設(shè)備在地圖上各個地方的分布情況,從而進行具體的分析。第三部分:從微觀上,利用數(shù)據(jù)挖掘技術(shù)對移動設(shè)備用戶使用的手機App種類進行關(guān)聯(lián)規(guī)則挖掘,借助數(shù)據(jù)挖掘軟件Weka中自帶的Apriori算法進行關(guān)聯(lián)規(guī)則挖掘,將挖掘出的實驗結(jié)果進行分析。
[Abstract]:In recent years, with the rapid development of the Internet, mobile devices have also entered the 4G interconnection era from the 3G communication era. In 2020, China is expected to use 5G mobile communication technology on a large scale. However, Nowadays, a hot topic in the field of data mining is to analyze and mine the rich data generated by mobile application devices. This paper will introduce data mining technology to study the use of mobile devices and analyze them. The research work of this paper mainly includes three parts: the first part: the integration of the experimental data file, the integration of the integrated data file using Excel for the overall analysis, From the user's basic characteristics, time characteristics, mobile phone brand characteristics, geographical location characteristics, the use of mobile phone App types of these aspects to find the valuable research point. Part two: from the macro perspective, The longitude and latitude data are clustered by using the clustering algorithm in data mining, and the function of the algorithm is realized by programming with Python language, and the result of clustering is visualized. You can see that the result is roughly the shape of a Chinese map, and there are fewer distributions outside the outline of the Chinese map. The API interface of Baidu Maps is used to graphically display the centroid data of each cluster, and to observe the distribution of mobile devices on the map. The association rules of mobile phone App used by mobile device users are mined by using data mining technology. The association rules are mined with the help of the Apriori algorithm included in the data mining software Weka, and the experimental results are analyzed.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP311.13
【相似文獻】
相關(guān)期刊論文 前10條
1 黃源,張福炎;數(shù)據(jù)挖掘及其技術(shù)實現(xiàn)[J];計算機應(yīng)用與軟件;2001年12期
2 香麗蕓;淺談數(shù)據(jù)挖掘及其應(yīng)用[J];昌吉師專學(xué)報;2001年02期
3 鄭雪燕,張杰明,岳洋;數(shù)據(jù)挖掘語言[J];計算機時代;2001年11期
4 劉明晶;數(shù)據(jù)挖掘[J];華南金融電腦;2001年04期
5 張偉;劉勇國;彭軍;廖曉峰;吳中福;;數(shù)據(jù)挖掘發(fā)展研究[J];計算機科學(xué);2001年07期
6 鐘曉;馬少平;張鈸;俞瑞釗;;數(shù)據(jù)挖掘綜述[J];模式識別與人工智能;2001年01期
7 朱建平,張潤楚;數(shù)據(jù)挖掘的發(fā)展及其特點[J];統(tǒng)計與決策;2002年07期
8 傅嵐;在數(shù)據(jù)海洋中打撈信息數(shù)據(jù)挖掘[J];科技廣場;2002年11期
9 李峻;數(shù)據(jù)挖掘,企業(yè)洞察先機的“慧眼”[J];中國計算機用戶;2002年48期
10 羅可,蔡碧野,卜勝賢,謝中科;數(shù)據(jù)挖掘及其發(fā)展研究[J];計算機工程與應(yīng)用;2002年14期
相關(guān)會議論文 前10條
1 史東輝;蔡慶生;張春陽;;一種新的數(shù)據(jù)挖掘多策略方法研究[A];第十七屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集(研究報告篇)[C];2000年
2 張弦;;數(shù)據(jù)挖掘在農(nóng)業(yè)中的應(yīng)用[A];紀念中國農(nóng)業(yè)工程學(xué)會成立30周年暨中國農(nóng)業(yè)工程學(xué)會2009年學(xué)術(shù)年會(CSAE 2009)論文集[C];2009年
3 魏順平;;教育數(shù)據(jù)挖掘:現(xiàn)狀與趨勢[A];信息化、工業(yè)化融合與服務(wù)創(chuàng)新——第十三屆計算機模擬與信息技術(shù)學(xué)術(shù)會議論文集[C];2011年
4 關(guān)清平;沉培輝;;概率網(wǎng)絡(luò)在數(shù)據(jù)挖掘上的應(yīng)用[A];科技、工程與經(jīng)濟社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年
5 丁瑾;;基于Web數(shù)據(jù)挖掘的綜述[A];山西省科學(xué)技術(shù)情報學(xué)會學(xué)術(shù)年會論文集[C];2004年
6 聶茹;田森平;;Web數(shù)據(jù)挖掘及其在電子商務(wù)中的應(yīng)用[A];中南六省(區(qū))自動化學(xué)會第24屆學(xué)術(shù)年會會議論文集[C];2006年
7 李菊;王軍;;數(shù)據(jù)挖掘在客戶關(guān)系管理的應(yīng)用[A];計算機技術(shù)與應(yīng)用進展·2007——全國第18屆計算機技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集[C];2007年
8 肖陽;李啟賢;;數(shù)據(jù)挖掘在中國鋼鐵行業(yè)中的應(yīng)用[A];中國計量協(xié)會冶金分會2012年會暨能源計量與節(jié)能降耗經(jīng)驗交流會論文集[C];2012年
9 楊磊;王貴成;汪勇;張占勝;;SQL Server 2005在數(shù)據(jù)挖掘中的應(yīng)用[A];2009年中國智能自動化會議論文集(第二分冊)[C];2009年
10 謝中;邱玉輝;;面向商務(wù)網(wǎng)站有效性的數(shù)據(jù)挖掘方法[A];第十八屆全國數(shù)據(jù)庫學(xué)術(shù)會議論文集(技術(shù)報告篇)[C];2001年
相關(guān)重要報紙文章 前10條
1 本報記者褚寧;數(shù)據(jù)挖掘如“挖金”[N];解放日報;2002年
2 周蓉蓉;數(shù)據(jù)挖掘需要點想像力[N];計算機世界;2004年
3 □中國電信股份有限公司北京研究院 張舒博 □北京郵電大學(xué)計算機科學(xué)與技術(shù)學(xué)院 牛琨;走出數(shù)據(jù)挖掘的誤區(qū)[N];人民郵電;2006年
4 《網(wǎng)絡(luò)世界》記者 王瑩;數(shù)據(jù)挖掘保險業(yè)的新藍海[N];網(wǎng)絡(luò)世界;2012年
5 劉俊麗;基于地理化的網(wǎng)絡(luò)數(shù)據(jù)挖掘與分析提升投資有效性[N];人民郵電;2014年
6 本報記者 連曉東;數(shù)據(jù)挖掘:金融信息化新熱點[N];中國電子報;2002年
7 本報記者 鳳小華 朱仁康;“數(shù)字挖掘軟件”引領(lǐng)中國信息化新浪潮[N];中國電子報;2003年
8 本報記者 史延廷;“成功企業(yè)數(shù)據(jù)挖掘暨數(shù)量化管理論壇”在京舉辦[N];中國旅游報;2002年
9 朱小寧;數(shù)據(jù)挖掘:信息化戰(zhàn)爭的基礎(chǔ)工程[N];解放軍報;2005年
10 本報記者 王小平;從“大集中”走向數(shù)據(jù)挖掘[N];金融時報;2002年
相關(guān)博士學(xué)位論文 前10條
1 于自強;海量流數(shù)據(jù)挖掘相關(guān)問題研究[D];山東大學(xué);2015年
2 張馨;全基因組SNP芯片應(yīng)用于CNV和L0H分析的軟件比對與數(shù)據(jù)挖掘[D];復(fù)旦大學(xué);2011年
3 彭計紅;基于數(shù)據(jù)挖掘的癡呆中醫(yī)證的研究[D];南京中醫(yī)藥大學(xué);2015年
4 李秋虹;基于MapReduce的大規(guī)模數(shù)據(jù)挖掘技術(shù)研究[D];復(fù)旦大學(xué);2013年
5 鄔文帥;基于多目標決策的數(shù)據(jù)挖掘方法評估與應(yīng)用[D];電子科技大學(xué);2015年
6 謝邦彥;整合數(shù)據(jù)挖掘與TRIZ理論的質(zhì)量管理方法研究[D];首都經(jīng)濟貿(mào)易大學(xué);2010年
7 何偉全;云南高校學(xué)生意外傷害因素關(guān)聯(lián)規(guī)則挖掘及風(fēng)險管控體系研究[D];昆明理工大學(xué);2015年
8 段功豪;基于多結(jié)構(gòu)數(shù)據(jù)挖掘的滑坡災(zāi)害預(yù)測模型研究[D];中國地質(zhì)大學(xué);2016年
9 白曉明;基于數(shù)據(jù)挖掘的復(fù)合材料宏—細觀力學(xué)模型研究[D];哈爾濱工業(yè)大學(xué);2016年
10 藍永豪(LAM Wing Ho);基于數(shù)據(jù)挖掘技術(shù)分析當(dāng)代中醫(yī)名家痤瘡驗方經(jīng)驗研究[D];南京中醫(yī)藥大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 林仁紅;基于數(shù)據(jù)挖掘的機遇識別與評價研究[D];首都經(jīng)濟貿(mào)易大學(xué);2007年
2 張彥俊;游戲運營中的數(shù)據(jù)挖掘[D];復(fù)旦大學(xué);2011年
3 焦亞召;基于多核函數(shù)FCM算法在數(shù)據(jù)挖掘聚類中的應(yīng)用研究[D];昆明理工大學(xué);2015年
4 王杰鋒;物聯(lián)網(wǎng)能耗數(shù)據(jù)智能分析及其應(yīng)用平臺設(shè)計[D];江南大學(xué);2015年
5 劉學(xué)建;數(shù)據(jù)挖掘在電子商務(wù)推薦系統(tǒng)中的應(yīng)用研究[D];昆明理工大學(xué);2015年
6 戴陽陽;基于數(shù)據(jù)挖掘的金融時間序列預(yù)測研究與應(yīng)用[D];江南大學(xué);2015年
7 石思優(yōu);基于主題模型的醫(yī)療數(shù)據(jù)挖掘研究[D];廣東技術(shù)師范學(xué)院;2015年
8 陳丹;移動互聯(lián)網(wǎng)信令挖掘?qū)崿F(xiàn)智慧營銷的設(shè)計與實現(xiàn)應(yīng)用研究[D];華南理工大學(xué);2015年
9 陳思;基于數(shù)據(jù)挖掘的大學(xué)生客戶識別模型的研究[D];昆明理工大學(xué);2015年
10 位長帥;基于客戶數(shù)據(jù)挖掘的電信客戶關(guān)系管理研究[D];西南交通大學(xué);2015年
,本文編號:1494321
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1494321.html