全自動(dòng)摳圖技術(shù)的研究
本文關(guān)鍵詞: 單圖像 光流 自動(dòng)摳圖 景深 出處:《山東師范大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:摳圖是一種精確提取任意圖像或視頻中前景物體的圖像處理技術(shù)。該技術(shù)最早可以追溯到19世紀(jì)50年代的光學(xué)摳圖,現(xiàn)在隨著計(jì)算機(jī)工業(yè)的迅猛發(fā)展,數(shù)字摳圖取代了傳統(tǒng)的光學(xué)摳圖并成為當(dāng)今計(jì)算機(jī)視覺(jué)領(lǐng)域的一個(gè)重要課題。由于數(shù)字摳圖模型存在欠約束性,現(xiàn)有的摳圖算法往往需要用戶事先標(biāo)記出圖像的前景和背景部分。而這些人為的標(biāo)記再增加了操作的復(fù)雜程度的同時(shí),也會(huì)影響摳圖的精度。針對(duì)上述問(wèn)題,本文提出了一種新的基于單幅圖像實(shí)現(xiàn)自動(dòng)摳圖的方法。本文主要做了以下工作:1、詳細(xì)介紹了常見(jiàn)的摳圖算法。本文將現(xiàn)有的摳圖算法分為兩類(lèi),交互式摳圖算法和自動(dòng)數(shù)字摳圖算法。交互式摳圖算法中主要介紹了貝葉斯摳圖、Graph Cuts、Easy matting和全封閉摳圖等經(jīng)典算法,并對(duì)基于學(xué)習(xí)的摳圖方法進(jìn)行了詳細(xì)分析;自動(dòng)數(shù)字摳圖算法中主要介紹了Flash matting、光譜摳圖算法、自動(dòng)三分圖生成算法和自動(dòng)肖像摳圖,并分別說(shuō)明了它們的優(yōu)點(diǎn)和不足。2、詳細(xì)介紹了光流算法:分別介紹了HS法和LK法及其改進(jìn)算法,并對(duì)上述算法進(jìn)行了分析。3、針對(duì)傳統(tǒng)摳圖方法的缺點(diǎn),并結(jié)合現(xiàn)有的光學(xué)原理及光流機(jī)制,本文提出了基于單幅圖像的自動(dòng)摳圖技術(shù)。該技術(shù)系統(tǒng)搭建簡(jiǎn)單,僅需要一面平面鏡和一只相機(jī)。通過(guò)該系統(tǒng)獲取所需圖片,并利用光學(xué)分析來(lái)得到一個(gè)景深計(jì)算等式。然后使用改進(jìn)的LK-HS法對(duì)圖像中的實(shí)景和虛景部分進(jìn)行光流計(jì)算,同時(shí)結(jié)合景深計(jì)算等式來(lái)獲得目標(biāo)場(chǎng)景的景深圖,再根據(jù)此景深圖獲得三分圖;最后,將其與現(xiàn)有的摳圖算法進(jìn)行計(jì)算生成a值,從而實(shí)現(xiàn)自動(dòng)摳圖。
[Abstract]:Matting is an image processing technique for extracting foreground objects from any image or video accurately. The technology can be traced back to optical matting in 1850s. Now with the rapid development of computer industry. Digital matting has replaced the traditional optical matting and has become an important subject in the field of computer vision. The existing matting algorithms often require users to mark out the foreground and background of the image in advance. These artificial markers not only increase the complexity of operation, but also affect the precision of matting. This paper presents a new method to realize automatic matting based on single image. In this paper, we mainly do the following work: 1, introduce common matting algorithms in detail. In this paper, we divide the existing matting algorithms into two categories. Interactive matting algorithm and automatic digital matting algorithm. The classical algorithms such as Easy matting and fully closed matting are analyzed in detail, and the learning-based matting method is analyzed in detail. The automatic digital matting algorithm, spectral matting algorithm, automatic three-point algorithm and automatic portrait matting algorithm are mainly introduced, and their advantages and disadvantages are explained respectively. The optical flow algorithm is introduced in detail: HS method, LK method and their improved algorithm are introduced, and the above algorithms are analyzed. 3, aiming at the shortcomings of traditional matting method. Combined with the existing optical principle and optical flow mechanism, this paper proposes an automatic matting technology based on single image, which is simple to build. Only a plane mirror and a camera are needed. Get the desired picture through the system. An equation of depth of field is obtained by optical analysis, and then the improved LK-HS method is used to calculate the light flow in the real and virtual parts of the image. At the same time, the depth of field map of the target scene is obtained by combining the depth of field equation, and then the three-point map is obtained according to the depth of field map. Finally, it is calculated with the existing matting algorithm to generate a value, thus realizing automatic matting.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 許嘉琳;朱耀麟;武桐;;基于Kinect的人物摳圖算法[J];西安工程大學(xué)學(xué)報(bào);2015年06期
2 張聰炫;陳震;黎明;;金字塔光流三維運(yùn)動(dòng)估計(jì)與深度重建直接方法[J];儀器儀表學(xué)報(bào);2015年05期
3 錢(qián)生;陳宗海;林名強(qiáng);張陳斌;;基于條件隨機(jī)場(chǎng)和圖像分割的顯著性檢測(cè)[J];自動(dòng)化學(xué)報(bào);2015年04期
4 肖德貴;辛晨;張婷;朱歡;李小樂(lè);;顯著性紋理結(jié)構(gòu)特征及車(chē)載環(huán)境下的行人檢測(cè)[J];軟件學(xué)報(bào);2014年03期
5 張佳威;支瑞峰;;光流算法比較分析研究[J];現(xiàn)代電子技術(shù);2013年13期
6 袁國(guó)武;陳志強(qiáng);龔健;徐丹;廖仁健;何俊遠(yuǎn);;一種結(jié)合光流法與三幀差分法的運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J];小型微型計(jì)算機(jī)系統(tǒng);2013年03期
7 儲(chǔ)s,
本文編號(hào):1491580
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1491580.html