天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 軟件論文 >

基于稀疏度自適應的礦井智能監(jiān)控圖像重構方法

發(fā)布時間:2018-01-30 21:13

  本文關鍵詞: 礦井 智能監(jiān)控 圖像重構 壓縮感知 稀疏表示 出處:《煤炭學報》2017年05期  論文類型:期刊論文


【摘要】:礦井智能監(jiān)控是實現(xiàn)少人或無人工作面自動化開采和可視化作業(yè)的重要保障。針對礦井監(jiān)控圖像易受噪聲干擾和霧塵環(huán)境等影響,采用傳統(tǒng)的基于奈奎斯特(Nyquist)采樣和壓縮方法存在分辨率低、圖像模糊和運算時間過長等問題,根據(jù)壓縮感知和稀疏重建理論,提出了一種利用分塊壓縮感知模型和自適應匹配追蹤均衡策略獲取礦井圖像的方法。該方法通過建立礦井圖像分塊壓縮感知模型,信源編碼過程先利用稀疏隨機矩陣對塊圖像進行壓縮、采樣、獲得觀測值,然后使用DFT作為稀疏基進行信號稀疏表示,最后利用一種改進的自適應匹配追蹤算法進行圖像重構實現(xiàn)解碼。研究結果表明,提出的方法在與其他算法的比較中體現(xiàn)了較好的優(yōu)越性,能有效提高礦井圖像在壓縮感知重構階段的解碼質量及其壓縮處理速度,具有較強的抗噪聲性能和魯棒性,有助于改善礦井監(jiān)控圖像的清晰度和實時處理性能。
[Abstract]:Mine intelligent monitoring is an important guarantee to realize automatic mining and visual operation of few or no man working face. The image of mine monitoring is vulnerable to noise interference and fog-dust environment and so on. The traditional Nyquist (Nyquist) sampling and compression method based on Nyquist has the problems of low resolution, blurred image and long computation time, according to the theory of compression perception and sparse reconstruction. This paper presents a method of obtaining mine image by using block compression perception model and adaptive matching tracking equalization strategy, which is based on the establishment of block compression perception model of mine image. The source coding process first uses sparse random matrix to compress the block image, samples the observed value, and then uses DFT as the sparse basis for signal sparse representation. Finally, an improved adaptive matching tracking algorithm is used for image reconstruction and decoding. The research results show that the proposed method has better advantages compared with other algorithms. It can effectively improve the decoding quality and compression processing speed of mine image in the stage of compression perception reconstruction. It has strong anti-noise performance and robustness. It is helpful to improve the clarity and real-time processing performance of mine monitoring image.
【作者單位】: 中國礦業(yè)大學(北京)機電與信息工程學院;
【基金】:國家重點研發(fā)計劃重點專項資助項目(2016YFC0801800) 國家自然科學基金資助項目(51674269) 中央高;究蒲袠I(yè)務基金資助項目(2014YJ01)
【分類號】:TD67;TP391.41
【正文快照】: 礦井智能監(jiān)控、煤巖識別和礦物探測對視頻圖像的質量和實時性要求較高,目前,在礦井圖像壓縮方法研究領域,Fourier變換、小波變化及其改進方法被國內外學者廣泛研究。文獻[1]提出了小波與統(tǒng)計建模的煤巖圖像識別方法,取得了較好的識別率與實時性。文獻[2]提出了一種雙邊濾波的,

本文編號:1477242

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/1477242.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶29c3b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com