天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > AI論文 >

Radial Basis Yhnction Neural Network (RBFNN) Adaptive Partic

發(fā)布時(shí)間:2016-06-20 17:28

  本文關(guān)鍵詞:基于量子自適應(yīng)粒子群優(yōu)化徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測(cè),由筆耕文化傳播整理發(fā)布。


基于量子自適應(yīng)粒子群優(yōu)化徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測(cè)

Network Traffic Prediction with Radial Basis Function Neural Network Based on Quantum Adaptive Particle Swarm Optimization

[1] [2] [3] [4]

Guo Tong Lan Ju-long Li Yu-feng Jiang Yi-ming (National Digital Switching System Engineering & Technological R&D Center, Zhengzhou 450002, China)

國(guó)家數(shù)字交換系統(tǒng)工程技術(shù)研究中心,鄭州450002

文章摘要該文提出一種量子白適應(yīng)粒子群優(yōu)化算法,該算法中,粒子位置的編碼采用量子比特實(shí)現(xiàn),利用粒子飛行軌跡信息動(dòng)態(tài)更新量子比特的狀態(tài),并引入量子非門實(shí)現(xiàn)變異操作以避免陷入局部最優(yōu)。用該算法訓(xùn)練神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)了徑向基函數(shù)(RJBF)神經(jīng)網(wǎng)絡(luò)參數(shù)優(yōu)化,建立了基于量子自適應(yīng)粒子群優(yōu)化RBF神經(jīng)網(wǎng)絡(luò)算法的網(wǎng)絡(luò)流量預(yù)測(cè)模型。對(duì)真實(shí)網(wǎng)絡(luò)流量的預(yù)測(cè)結(jié)果表明,,該方法的收斂速度和預(yù)測(cè)精度均要優(yōu)于傳統(tǒng)RBF神經(jīng)網(wǎng)絡(luò)法、粒子群-RBF神經(jīng)網(wǎng)絡(luò)法、混合粒子群-RBF神經(jīng)網(wǎng)絡(luò)法和自適應(yīng)粒子群-RBF神經(jīng)網(wǎng)絡(luò)法,并且預(yù)測(cè)效果不易受時(shí)間尺度變化的影響。

AbstrA novel Quantum Adaptive Particle Swarm Optimization (QAPSO) method is proposed. In this algorithm, the position encoding of the particle is achieved with quantum bits, and the state of quantum bit is updated dynamically with particle trajectory information. Then the mutation operation is performed by quantum non-gate to avoid falling into local optimum, which increases the diversity of particles. Afterwards, the Radial Basis Function (RBF) neural network is trained with QAPSO to implement the optimization of RBF neural network parameters. The network traffic prediction model is established based on the Quantum Adaptive Particle Swarm Optimization and RBF Neural Network (QAPSO~RBFNN). Forecasting results on real network traffic demonstrate that the convergence speed of the proposed method is faster and prediction accuracy is more accurate than that of traditional RBF neural network, the Particle Swarm Optimization and RBFNN (PSO-RBFNN), Hybrid Particle Swarm Optimization and RBFNN (HPSO-RBFNN), Adaptive Particle Swarm Optimization and RBF Neural Network (APSO-RBFNN). Furthermore, the forecasting effect of this method is stable on different scales

文章關(guān)鍵詞:

Keyword::Radial Basis Yhnction Neural Network (RBFNN) Adaptive Particle Swarm Optimization (APSO) Quantum bit Traffic prediction

課題項(xiàng)目:國(guó)家973計(jì)劃項(xiàng)目(2012cB315900)和國(guó)家863計(jì)劃項(xiàng)目(2011AA01A103)資助課題

 

 


  本文關(guān)鍵詞:基于量子自適應(yīng)粒子群優(yōu)化徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量預(yù)測(cè),由筆耕文化傳播整理發(fā)布。



本文編號(hào):59527

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/59527.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5ce2d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲最新中文字幕一区| 十八禁日本一区二区三区| 空之色水之色在线播放| 久久国产人妻一区二区免费| 久久热在线免费视频精品| 91人妻人人澡人人人人精品| 精品一区二区三区乱码中文| 日韩欧美二区中文字幕| 日木乱偷人妻中文字幕在线| 亚洲黄色在线观看免费高清| 国产男女激情在线视频| 日韩中文字幕有码午夜美女| 国产视频在线一区二区| 国产一区二区三区精品免费| 久久热在线免费视频精品| 国内外激情免费在线视频| 国产午夜精品福利免费不| 又大又紧又硬又湿又爽又猛| 欧美亚洲另类久久久精品| 91偷拍与自偷拍精品| 日本免费一本一二区三区| 国产精品推荐在线一区| 免费性欧美重口味黄色| 99一级特黄色性生活片| 丁香六月婷婷基地伊人| 久久99精品国产麻豆婷婷洗澡| 欧美日韩一区二区综合| 欧美日韩乱一区二区三区| 日韩精品一区二区三区含羞含羞草| 91免费精品国自产拍偷拍| 美女被后入视频在线观看| 麻豆最新出品国产精品| 狠狠亚洲丁香综合久久| 搡老熟女老女人一区二区| 日本人妻的诱惑在线观看| 国产二级一级内射视频播放| 成人精品亚洲欧美日韩| 少妇人妻无一区二区三区| 国产真人无遮挡免费视频一区| 隔壁的日本人妻中文字幕版| 国产三级黄片在线免费看|