智能服務機器人軟件系統(tǒng)設計
[Abstract]:Since the birth of robots, industrial robots have been spared a large number of manual repetitive operations. However, the current industrial robots can only work in a fixed working environment, and their direct help to ordinary people in their daily lives is far less than the general public's fanatical fantasies about robots. With the development of industrial technology, industrial robots have been widely used in manufacturing industry, especially in welding and assembly lines, which are used as a substitute for repeated labor. Furthermore, the current robot technology is far from competent to cooperate with humans to accomplish tasks in the same environment. On the other hand, with the aging of population structure and the popularity of electronic life among the general public, the desire of ordinary users to service robots into our daily life is becoming stronger and stronger. The current service robot can not enter ordinary people's life because of its own two obstacles. The first is the communication obstacle between human and robot. The second is that the robot's adaptability to complex and changeable environment can not meet the requirements of application. In order to solve these two problems, robot researchers mainly improve the applicability of robots in general social life from the aspects of software and hardware. By improving the level of software design and the perception ability of the robot, the technical threshold of human-robot dialogue is lowered, the adaptability of the robot to complex environment is improved, and the execution ability of multi-level and multi-priority tasks is enhanced. Give the robot intelligence. At the same time, develop and design a more delicate and flexible mechanical motion mechanism and sensors to expand the mobile space of the robot. In this paper, aiming at the shortage of software design board and intelligence of robot, firstly, from the angle of artificial intelligence and the cultural background of robot, the functional localization of service robot is expounded. Four paradigms of artificial intelligence robot design in the past 40 years are summarized: hierarchical paradigm, response paradigm, mixed paradigm, and learning paradigm. On this basis, this paper introduces an example of constructing an intelligent robot RobWen behavior control program framework. Through the design of robot behavior pattern under this framework, the robot can adapt to the simple office and campus working environment. Perform complex structure tasks and respond flexibly to changes in external state. The robot program framework includes a planner-centric perceptron, an actuator, a cognitive module, and a memory module. The software architecture of this robot is based on the distributed robot API:Player robot development platform. In the Player distributed architecture, the tasks of the robot are implemented by concurrent execution. Each unit of the robot can simultaneously complete its own tasks independently in the form of threads, and the message passing and cooperation of cross-task can be accomplished by messages between threads. At the end of this paper, a task execution example of robot on Stage simulation platform is provided. The simulation results show that it is feasible to construct a distributed parallel operating robot software architecture based on the data read and write frequency of the system.
【學位授予單位】:東北大學
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:TP242
【共引文獻】
相關期刊論文 前8條
1 范新剛;彭湘凱;;基于感知行動的一種雙向規(guī)劃算法研究[J];廣東技術師范學院學報;2013年05期
2 范新剛;彭湘凱;;基于感知行動的一種雙向規(guī)劃算法研究[J];廣東技術師范學院學報;2013年03期
3 王日鳳;陳剛;藍紅莉;;簡化四宮格問題求解的認知仿真分析[J];廣西科技大學學報;2015年01期
4 SHEN YuPing;ZHAO XiShun;;Proof systems for planning under 0-approximation semantics[J];Science China(Information Sciences);2014年07期
5 宋拴;俞揚;;一種結(jié)合演示數(shù)據(jù)和演化優(yōu)化的強化學習方法[J];計算機工程與應用;2014年11期
6 HE JunHu;ZHANG JianWei;;In-hand haptic perception in dexterous manipulations[J];Science China(Information Sciences);2014年12期
7 楊唐文;高立寧;阮秋琦;韓建達;;移動雙臂機械手系統(tǒng)協(xié)調(diào)操作的視覺伺服技術[J];控制理論與應用;2015年01期
8 姜孟;趙思思;;話語理解過程的可供性提取研究[J];外語教學與研究;2014年04期
相關會議論文 前1條
1 王奇志;徐德;時魯艷;;機器人模仿學習與人機交互的學習控制綜述[A];第25屆中國控制與決策會議論文集[C];2013年
相關博士學位論文 前7條
1 安暉;意識的哲學分析[D];山西大學;2013年
2 徐U_蕾;未知環(huán)境下移動智能體自主導航研究[D];中國海洋大學;2013年
3 王宏佳;微小型高性能永磁交流伺服系統(tǒng)研究[D];哈爾濱工業(yè)大學;2012年
4 張文泉;辨物居方、明分使群—汽車造型品牌基因表征、遺傳和變異[D];湖南大學;2012年
5 郭巍;微型汽車內(nèi)外飾產(chǎn)品設計制造技術基礎研究[D];武漢理工大學;2013年
6 馬樂;基于非接觸觀測信息的機器人行為模仿學習[D];沈陽工業(yè)大學;2014年
7 王東浩;機器人倫理問題研究[D];南開大學;2014年
相關碩士學位論文 前10條
1 郭磊明;基于粒子濾波的戶外移動機器人地形坡度定位[D];哈爾濱工業(yè)大學;2013年
2 李明易;類人猿機器人雙足全方位步行智能學習運動控制研究[D];哈爾濱工業(yè)大學;2013年
3 禹超;雙臂強耦合系統(tǒng)的運動規(guī)劃與控制的研究[D];哈爾濱工業(yè)大學;2012年
4 李景敏;一種新型擬人機械腿的動力學分析及自適應迭代學習控制研究[D];浙江工業(yè)大學;2013年
5 孫小凱;基于RGB-D信息的物體定位與識別[D];浙江大學;2014年
6 朱振超;三維雙足步行機器人的被動穩(wěn)定行走控制方法研究[D];吉林大學;2014年
7 王浩;混合驅(qū)動型腿部機構(gòu)的設計與實驗研究[D];中國科學技術大學;2014年
8 崔亮亮;自平衡雙輪移動小車設計與控制研究[D];華南理工大學;2014年
9 陶釗榕;平均報酬準則下的逆向強化學習算法研究[D];哈爾濱工業(yè)大學;2013年
10 李寧;智能手機導游系統(tǒng)關鍵技術研究[D];河南大學;2014年
,本文編號:2416885
本文鏈接:http://sikaile.net/kejilunwen/rengongzhinen/2416885.html